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Preface to the Fourth Edition

This fourth English edition is based on the fifth German one, published in 1986.
Compared with the third English edition it contains a basically new treatment of
many sections, because in the meantime fundamental research, as well as practical
applications, have made much progress.

To avoid undue growth in the size of the book, some sections have had to be
omitted or shortened, we hope without losing too much of an overall view of this
quickly growing field of non-destructive testing (NDT).

In Part A the sections on basic physics give more emphasis to guided waves,
mode changing processes and the diffraction of waves. The useful creeping or head-
waves have been introduced as well as a fuller treatment of scattered or edge waves.
In the chapter on generation and reception of ultrasonic waves by methods other
than piezo-electricity, the various laser techniques have been treated more thor-
oughly.

In Part B which covers techniques and instrumentation, the rapid progress of
microelectronics is the main reason for an enlargement, and further improvements
in transducer design and their arrangement as phased arrays has also been reported.
Much more space was required in Chapter 13 which covers real-time imaging meth-
ods. Though not yet used on a large scale in practice, they hold much promise for
the future, especially in the case of computer-assisted holographic methods.

In Part C the evaluation of defect size and characteristics needed more space for
reporting on new methods using diffracted waves.

In Part D, in addition to nuclear reactor testing, the Chapters on heavy forgings,
railway components and materials, and the problems associated with austenitic
welds, composite materials and concrete have all been revised substantially.
Hardness testing using ultrasound has been added and the chapter on standardiza-
tion updated. In Section 33.3 evaluation of materials and their characterization by
attenuation and scattering has been given more space.

A difficult problem has been the bibliography. Today there are probably more
than 50000 published papers on ultrasonic NDT and it has been a difficult task of
selection to restrict the total to about 1900. The papers of the last three years could
be evaluated only very briefly, but the bibliography from the Sth German edition
has been enlarged by adding a Supplement containing a further 206 entries ident-
ified by an S prefix. We ask authors for their understanding if they do not find their
particular papers included, and their pardon if we have overlooked an important pu-
blication.

As well as the co-authors mentioned above (mostly of the Krautkrimer Com-
pany, Cologne), a number of experts have also collaborated, to whom the authors
are very much indebted. These include Dr. K. Egelkraut, Bundesbahn-Versuchsamt
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Minden; Dr. W. Mohr, BBC Baden/Switzerland; Mr. G. Kiinne, Dortmund;
Dr. H. Schneider, Mannesmann Forschungsinstitut, Duisburg; Dr. B. Werden,
TUV Essen; Dr. C. Kleesattel, New York; Dr. S. Hirsekorn, IzfP Saarbriicken and
Dr. H. Dolle, BBC Baden/Switzerland.

The translation has been carried out by Mr.J. D. Hislop, Derby, England in col-
laboration with one of the principal authors. It must be stated however that we owe
to Mr. Hislop not a literal translation, but a considerable improvement in the pres-
entation as well as the correction of a number of faults and errors. He also contri-
buted many technical details of test methods based on his 38 years experience in
ultrasonic testing.

On this occasion we also would like to thank many unnamed friends for their
kind interest and their communications concerning specific items. We are always
grateful for personal criticisms and for the correction of errors.

Finally we thank the editor very heartily for the excellent preparation of the
book for printing as he has done previously for the earlier editions.

Cologne, Spring 1990 J. and H. Krautkramer
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Introduction

Acoustics, the science of sound, describes the phenomenon of mechanical vibra-
tions and their propagation in solid, liquid or gaseous materials. Empty space
knows no sound because it is the particles of matter themselves which vibrate, in
contrast for instance to the oscillations of light or other electromagnetic waves
where the electric and magnetic state of free space oscillates. In air a sound wave
moves a discrete volume of air back and forth around its neutral position, whereas a
light wave has no influence on its state of rest or motion.

If such mechanical movements in matter, repeated periodically and for a given
length of time, are classified according to their number of cycles per second, a
range can be defined in which the human ear can serve as detector. The sound is
audible if it reaches the ear either through the air or through the body. This re-
quires, however, that its frequency be neither too low nor too high. Sound below ap-
prox. 10 Hz (hertz = cycles per second) and above approx. 15000 to 20000 Hz is in-
audible to the human ear. For the lower limit this statement is, however, strictly
correct only where this concerns sinusoidal oscillations. Other forms of vibration
are resolved by the ear into harmonics, thus making them audible as noise pulse se-
quences.

Just as in the case of light waves, where the higher frequencies which are invisi-
ble to the eye, are called ultraviolet, so the sound waves above 20000 Hz are re-
ferred to as ultrasound or ultrasonic. It has been suggested that sound waves below
10 Hz be called subsonic. This division is purely arbitrary and dependent on the
human ear. Completely different demarcations apply in the case of other generating
and detecting methods.

Ultrasonic waves are a rather common occurence in nature and in daily life,
and are occasionally of such intensity that we may regard ourselves as very fortu-
nate indeed that our ear is not burdened by them, as for instance in the case of
steam whistles. A rotating grindstone when used for grinding a specimen generates
in addition to audible noise intense ultrasonic waves with frequencies as high as
those used for testing materials, viz. above 100,000 Hz (100 kHz, kilocycles per sec-
ond) and up to 10000000 Hz (10 MHz, megacycles per second).

The numerous technical applications of sound waves and ultrasonics may be di-
vided into two groups. As in medicine where X-rays are used for two completely dif-
ferent purposes, viz. therapeutically for their action on tissue (e.g. cancer irradia-
tion) and diagnostically for studying certain medical conditions (e.g. radioscopy of
the lungs), so sound can be used to act physically on a given material, or to explore
its physical condition. In the first case the energy of the sound wave is used, for ex-
ample for ejecting particles of dirt from fabrics during washing, for detaching for-
eign bodies from a surface during cleaning, for removing metal chips during drill-
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ing, for overcoming surface tension during emulsification, for mixing, and for
many other applications of mechanical force all concerning the exploitation of
sound energy.

In other cases the energy of the sound wave is utilized only to the extent re-
quired for transmitting a sufficiently clear signal, for example in public address sys-
tems, for locating ships at sea, for sounding ocean depths, locating shoals of fish,
and for checking the condition of materials, for example for detecting the presence
of flaws, for measuring their thickness, and determining their elastic and metallur-
gical properties. The sound wave is in these cases the carrier of information and
usually one has to transmit an ultrasonic wave into the specimen and to receive a
returning one to analyse the information it carries. There are also conditions aris-
ing whithin the material itself which are responsible for generating ultrasonic waves
when the material is stressed. Then we can speak of acoustic emission, which also
plays a certain role in materials testing.

In this book principally the diagnostic applications of ultrasound for materials
testing will be reported.

Fundamentally to determine the mechanical properties of a given material, a
mechanical method is the most direct and ready to hand. To determine for example
whether a shaft is cracked, it can be stressed by tension or bending until the crack
manifests itself by an open break. This is a mechanical but unfortunately a destruc-
tive test. By contrast, sound and ultrasonics provide, for the same purpose, non-de-
structive testing methods which basically also use mechanical stresses produced by
tensile, compressive, shearing or flexural forces but which are of such low intensity
that no material damage will occur.

This does not imply, however, that an indirect testing method, for example a
magnetic particle test which reveals the distorted magnetic field lines produced by
a crack, may not at times be more suitable, provided the correlation between the
mechanical properties of the specimen concerned and the physical means applied,
such as magnetism, electricity, radiation, etc., are unambiguous.

Leaving out the restrictive qualification “ultra”, ordinary sound has long been
used for testing individual specimens, such as for example forgings or castings,
where gross internal defects can be detected by a changed ringing note when the
specimen is struck with a hammer, a method still practised today. Every housewife
knows that a china cup can be checked for cracks by tapping it. One can therefore
with justice maintain that testing by sound is one of the oldest non-destructive
methods for detecting hidden defects since it is very probable that the inventors of
ceramics would already have put it to use. By the application of modern electronics
it has become one of the most up to date and most versatile testing tools.

The transition from audible sound to ultrasonic sound has been made possible
by modern methods of generation and detection which replace hammer and ear.
Whereas the natural vibration produced by a hammer blow depends very little on
the hammer but very much on the shape of the specimen and on the striking point,
as in the case of a bell for example, the frequency can be predetermined if electrical
sound generators are used. In the case of higher frequencies the wavelength of a vi-
bration becomes smaller in inverse proportion, and finally extremely small com-
pared with the dimensions of the specimen concerned. One can then direct a beam
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of such waves into a specimen without interference resulting from its shape and di-
mensions, just as in the case of light from a projector. In this way the specimen is
“sounded out” a term already common in popular speech, and a specimen which is
defect free and fit for its purpose has long been described as “sound”.



Part A Physical Principles of the
Ultrasonic Testing of Materials

1 Ultrasonic Waves in Free Space

1.1 Oscillations and Waves

Ultrasonic testing of materials utilises mechanical waves in contrast, for instance,
to X-ray techniques which use electromagnetic waves. Any mechanical wave is
composed of oscillations of discrete particles of material. The motion carried out by
a small mass attached to a spring as shown in Fig. 1.1 if pulled down once and re-
leased, is called an oscillation. Left to itself, the mass oscillates about the equilib-
rium position. The nature of this oscillation is of particular importance inasmuch
as it is sinusoidal, the path recorded as a function of time being a sine curve. It is
obtained only if the driving force, in this case supplied by the spring, increases pro-
portionately to the displacement. It is then also referred to as an elastic oscillation.
Furthermore, one can imagine the body to consist of individual particles kept in
position by elastic forces. Very much simplified, the model of an elastic body can
be visualised as shown in Fig. 1.2, but three-dimensionally. Provided such a body is
not stressed by compression or tension beyond its elastic limit, it behaves like this
spring model. In it, the particles can perform elastic oscillations. How then does a
wave arise from an oscillation?

Let us assume that all material particles on the left side of the model are excited
collectively in step with the sinusoidal oscillations, for instance by cementing them

5 Amplitude

Fauva)
/AAVARY.

limg —

Fig.1.1. Sinusoidal oscillation of a Fig. 1.2. Model of an elas-
loaded spring tic body
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Fig. 1.3. Longitudinal wave

to a diaphragm which is made to oscillate by electrical means, as in a loudspeaker
for example. All particles in the first plane are then forced to oscillate with the
same amplitude (width of oscillation) and frequency (number of oscillations per
second). The elastic forces transmit the oscillations to the particles in the second
plane. When these have started to oscillate, the vibratory movement is transmitted
to the third plane, and so forth. If all points were interconnected rigidly, they would
all start their movement simultaneously and remain constantly in the same state of
motion, i.e. in the same phase. In an elastic material this is not the case, the motion
requiring a certain period of time to be transmitted and the planes reached subse-
quently lag in phase behind those first excited. While in a certain plane the parti-
cles are moving from the right through the point of equilibrium to the left, the par-
ticles in a plane further to the right have only just started to move from left to right.
Their delay is then exactly one half oscillation. Figure 1.3 shows the instantaneous
picture of a section of the model in which a wave travelling from left to right has
not yet reached the right-hand edge. It can be seen that the phase shift of the oscil-
lations creates zones where the particles approach each other particularly closely.
These compression zones alternate with rarified zones. The chronological pattern of
the wave shows that these zones are constantly recreated on the excitation side and
that they travel in the body at constant velocity and uniform intervals towards the
right. This represents an elastic wave.

Of course, Fig. 1.3 cannot vividly demonstrate the movement of the wave, which
could only be done on a cine film. The wave phenomenon as such is, however, well
known from another kind of wave, viz. waves in water. A wave crest corresponds to
a zone of compression. A naive observer might think that the wave crest transports
water, because his eye can follow the wave crest. That this is not the case in reality
is demonstrated by any small body floating on the water, which merely moves up
and down. The only thing that travels in the wave is its state, in the case of elastic
waves the state of compression and rarefaction. The particles themselves remain in
place and merely oscillate about their positions of rest.

Of course, the model of a solid body can be visualised as consisting of many
separate particles of material only if it is uniform (homogeneous) throughout and if
it shows the same elastic behaviour in all directions (isotropic). Each point shown
in Fig. 1.3 then represents the mass of a small cube.
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Fig. 1.4. Transverse wave

The spring model shown in Fig. 1.2 cannot be applied to liquid or gaseous sub-
stances where the individual particles are not tied to a position of rest but where
they are free. Nevertheless, these substances also offer a certain resistance when
compressed or expanded, as shown for example by an air pump. They can therefore
also transmit elastic waves.

When visualising the models presented in Figs. 1.3 and 1.4, it should be realised
that the plane of dots represents only a section of the threedimensional body, in as
much as boundary surfaces would modify the wave process considerably. A wave as
depicted in Figs.1.3 and 1.4 can exist in this way only when remote from any
boundaries.

A few parameters of a wave will be defined with the aid of Fig.1.3. The fre-
quency of a wave is the number of oscillations of a given particle per second. Within
a given wave it is the same for all particles and it is identical with the frequency of
the generator which can be chosen arbitrarily. The wavelength is the distance be-
tween two planes in which the particles are in the same state of motion, for instance
two compression zones and it is inversely proportional to the frequency: high fre-
quencies corresponding to short wavelengths, and vice versa. The speed of sound is
the velocity of propagation of a given condition, for example a compression zone.
This velocity is a characteristic of the material concerned and in general is constant
for a given material for any frequency and any wavelength. Numerical data and for-
mulae are given in Section 1.3 and Table A 1. For us the most important quantity
in a given sound field is the sound pressure. At points of higher particle density the
pressure is likewise higher than the normal pressure, while in the dilated zones it is
lower. A very small and inertia less pressure gauge placed in the path of the sound
wave would indicate alternately high pressure and low pressure in sinusoidal se-
quence. This alternating pressure is the sound pressure. It occurs not only in gases,
but also in liquid and solid bodies. The maximum deviation from the normal pres-
sure (without sound wave) is called the amplitude of the sound pressure which is
closely connected to the amplitude of movement, i.e. the maximum deflection of
the particles from their position of rest.

To indicate shorter wavelengths, in the same way as shown in Fig. 1.3, it would
be necessary to choose particles with smaller masses and packed more closely, that
is to subdivide the material more finely. This has its limits as soon as atomic di-
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mensions are reached. It could then no longer be expected that the masses and for-
ces would be evenly distributed. Elastic waves are therefore possible only in the
case of wavelengths which are still very long compared with the distances between
atoms or molecules.

The wave described in Fig. 1.3 is called a longitudinal wave because the oscillations
occur in the longitudinal direction, that is the direction of propagation, is not the
only kind of wave although from our point of view it is the most important. Since
compressional and dilatational forces are active in it, it is also called a pressure or
compression wave, and because its particle density fluctuates it has also been given
the name density wave.

This is the real sound wave because it transmits the oscillations of a source of
acoustic energy through the air to our ears. Experience shows that the same wave
also transmits sound through liquid or solid bodies.

However, in solid bodies another kind of wave can also occur, viz. the transverse
wave; it is indicated schematically in Fig. 1.4 in the form of an instantaneous pic-
ture of the particle motion. It will again be assumed that the wave travels from left
to right. It can be seen that in this case the particles no longer oscillate in the direc-
tion of propagation but at right angles to it, that is transverse.

The excitations can be visualised as a motion in which the particles on the left-
hand surface of the body are moved sinusoidally up and down by a periodical shear
force. In solid bodies such a shear force can be transmitted to the particles in the
adjacent planes but their transverse oscillations will show a lag in time, depending
on their distance from the plane of excitation. This wave is also called a shear wave
and the wavelength is determined by the distance between two planes in which par-
ticles are in a similar state. In Fig. 1.4 the wavelength is indicated between two
planes in which the particles instantaneously pass through their position of rest in a
direction from top to bottom.

The sound pressure of the longitudinal wave is in this case replaced by the alter-
nating shear force, but the name “shear of sound” is not used. The pressure is the
force at right angles to the unit surface, while the shear force is defined as the force
per unit surface, but parallel to it. Thus, the only difference between pressure and
shear is one of direction. In all other respects these two characteristics are identical.
In what follows we shall therefore speak only generally of sound pressure even
where this refers to the shear force in a transverse wave.

Figure 1.4 indicates that the shear is greatest where the particles pass through
their position of rest because at this point the relative displacement of two consecu-
tive particle planes is greatest. At the points of maximum amplitude the shear is
zero. The same has been found in respect of the sound pressure in Fig.1.3: where
the particles oscillate through their position of rest they either come closest to each
other or are furthest apart. At these points the sound pressure reaches its maximum
(or its minimum) value. The generalised sound pressure and the motion of the par-
ticles are thus not in phase but transposed a quarter period relative to each other.

Since gases and liquids are in practice incapable of transmitting shear (other-
wise they could not flow so readily along walls or through pipes), transverse waves
can for the practical testing of materials penetrate appreciable distances only in
solid bodies.
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1.2 Non-planar Waves; Interference of Waves

The various kinds or modes of wave can occur in different wave forms, by which the
form of the wave front is meant. Up to now we have described plane waves, in which
a given phase of the oscillation is always the same in a given plane. This co-phasal
plane is the wave front which, during propagation, moves parallel to itself. The wave
front need not necessarily be flat and on the contrary is never strictly flat in the
case of natural sound generators, but usually of complex curvature. However, for
clearer presentation and to simplify the calculations it is preferable to replace natu-
ral sound waves by simple wave forms, e.g. plane, spherical or cylindrical waves as
approximations.

On a given wave front, for example on a sphere in the case of a spherical wave,
only the phase is identical; i.e. the passage through zero at a given moment, but not
necessarily the amplitude or the sound pressure. The latter, for instance, may have
an appreciable value only within a certain angular sector in a given direction, while
in other directions it may disappear completely. This represents a spherical wave
beam as produced for instance by directional loud speakers in air, and also in most
cases by ultrasonic sound generators in the testing of materials.

To avoid any misunderstanding it should be stated specifically that the descrip-
tion of natural acoustic phenomena by means of such simple wave forms for each
case is permissible only within certain limits, e.g. in close proximity to a plane
sound generator for plane waves, or at great distance for spherical waves.

So far it has been tacitly assumed that the generating oscillation capable of
producing one of the described wave types consists of a single frequency and lasts
very long. Complex and brief oscillation phenomena can be regarded as consisting
of a sum of an infinite, or also finite, number of such sinusoidal oscillations which
differ in their amplitude, frequency and phase. In an elastic medium each such par-
tial oscillation produces it own wave. In the case of longitudinal and transverse
waves in a large body all frequencies have the same velocity and all partial waves
travel equally fast, so that each particle carries out the same oscillation. A complex
and brief form of oscillation is thus transmitted by these waves unchanged if energy
losses are neglected. Absorption or scattering may of course affect the various fre-
quencies differently, as for instance in air where distant thunder appears to have a
lower note since the higher frequencies are attenuated more severely.

In order to demonstrate the influence of one free wave on another within an in-
finite body, we imagine two waves penetrating each other from different directions.
What is the movement of a particle oscillating simultaneously in both waves? Pro-
vided both amplitudes do not stress the substance beyond its elastic limit, beyond
the so-called linear range, the motions are added vectorally, i.e. according to a par-
allelogram and are composed of motions which the particle would carry out alone
in each separate wave. In this process, however, neither of the waves disturbs the
other and the two sound beams change neither their original direction nor their fre-
quency and amplitude.

In one special case, however, one obtains an interesting form of the particle os-
cillations, viz. a standing wave. This paradoxical formation (for the essence of a
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Fig. 1.5. Formation of a standing wave by two waves from opposite directions

wave is that it travels) results from the superposition of two similar plane waves of
identical frequency, amplitude and (in the case of transverse waves) direction of os-
cillation but different direction of propagation. The special case in which they have
exactly opposing directions of propagation is shown in Fig.1.5 for a transverse
wave. The sinusoidal curves represent the connecting lines of a series of particles
(of matter) at a given moment. Figure 1.5a to e show this state for five consecutive
moments. Figure 1.5f is the overall oscillation of the standing wave. The most im-
portant fact in this connection is that certain particles constantly remain in a state
of rest, which is never the case in an ordinary wave. The points where the two waves
constantly cancel each other are called nodes, and the points of maximum ampli-
tude between them, antinodes.

This form of the wave is generally known from the natural oscillations of taut
strings. In the case of the steric standing transverse or longitudinal wave it is, how-
ever, necessary to visualise the presentation in Fig.1.5 supplemented spatially by
numerous additional rows of particles. The nodes and antinodes are then located
on fixed planes.

It should not be overlooked that the representation of this phenomenon as a
standing wave, or as the mutual penetration of two opposing waves, concerns the
same physical fact.

The standing longitudinal wave is derived from the representation of a standing
transverse wave by regarding the amplitudes of the sinusoidal oscillations in
Fig. 1.5 as displacements of the particles in the direction of wave travel or against it
(Fig. 1.6). The points of maximum density and dilatation are located in the plane of
the nodes spaced one wave length from each other. The nodes of the motion are
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Fig. 1.6. Standing longitudinal wave. Instan-
taneous pictures at different moments 1-35,
corresponding to Fig. 1.5. The nodes of the mo-
tion are located in planes spaced 4/2

Fig. 1.7. Standing wave produced by ref-
lection at a free wall. Plotted is the am-
plitude of the particles. At the free wall
it has an antinode

therefore simultaneously the antinodes of the sound pressure and vice versa, as is
readily seen in Fig. 1.6. The nodes of motion and pressure are thus located a quarter
wave length from each other.

In practical uitrasonics, standing waves occur if the material is no longer infi-
nite. At a free surface, i.e. the boundary with empty space, the wave is reflected. In
the case of a plane boundary and perpendicular incidence the nature of the inci-
dent wave is not changed, but incident and reflected wave have opposite directions,
as described in Fig. 1.7 which shows the reflection of a short wave train from a wall,
resulting in a brief formation of a standing wave over a distance of a few wave-
lengths. Figure 1.7 shows the reflection of a wave at a free wall, i.e. at the interface
between a given substance and vacuum or air, where the wave is totally reflected.
According to the boundary conditions the motion of the particles has at that point a
maximum, viz. an antinode and the pressure or shear has a node. In Fig. 1.7 is plot-
ted the amplitude of the motion which can be regarded both as longitudinal motion
in the case of a pressure wave and as a transverse motion in the case of a shear
wave.

Standing ultrasonic pressure waves are produced intentionally when measuring
wall thicknesses by the resonance method. In other cases they may cause consider-
able confusion and should be avoided.

The standing wave is a special case of the superposition of different waves of the
same frequency, which is generally called interference. This is also the basis of a very
vivid method for describing commonly occurring wave forms and wave fields, viz.
Huygens’ principle which will render us good service when explaining the radiation
of ultrasonic waves.

Briefly expressed, this principle states that any arbitrary wave form can be con-
structed from a large number of simple spherical waves of the same frequency, i.e.
the so-called elementary waves, which must, however, be chosen correctly regarding
origin, phase and amplitude. Every wave surface can be visualised as an envelope of
such elementary waves whose origin is located on a preceding wave surface. Fi-
gure 1.8 makes this clear. It shows in cross-section a piston-shaped sound generator
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with a few wave surfaces constructed according to Huygens’ principle. It can be
seen that in the centre, in front of the plane sound generator, a plane wave surface
is formed which at its edge (seen three-dimensionally) changes into an annular
form.

According to the same principle it can also be seen that an impermeable wall
produces no sharp shadow in a sound field because its edge can be regarded as the
origin of new elementary waves which travel around the wall into the shadow zone.

However, application of this principle cannot provide an answer to the question
how strong the excitation becomes at a given point of the sound field, for example
in the shadow of the wall. The solution can only be found by a mathematical treat-
ment, according to Fresnel (Chapter 4.2).

1.3 Physical Units for Characterizing Free Waves and
the Elastic Constants of Materials

In this chapter we will treat the dependence of the wave properties described above
on the characteristics of the transmitting material. If not stated otherwise the inter-
national SI units are used. The list below defines the most frequently used quanti-
ties and their symbols.

@  angular frequency rad/s

f  frequency Hz=s"!1
A wavelength m

& particle displacement m

c velocity of sound m/s

v particle velocity m/s

¢  density kg/m?
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F  force N = kg m/s?
p  sound pressure Pa = N/m?
u Poisson’s ratio

E  modulus of elasticity (Young’s modulus) N/m?

G  modulus of shear N/m?

Z  acoustic impedance Ns/m’

P acoustic power w

J  intensity of acoustic power W/m?

The following relation between frequency, wavelength and sound velocity is
valid for all kinds of wave

fi=c. 1.mn

Instead of the units Hertz and metre, however, MHz (megahertz or Mc/s) and
millimetre are usually used for the frequency and wave length respectively, because
this furnishes numerical data of the order 1 which for our purpose are easy to mem-
orise. Thus:

f A ¢

MHz mm  km/s

1.2)

For general orientation a few rounded-off values of the wavelengths in steel and
water in the frequency range from 0.5 to 10 MHz, which are of main interest in the
following pages, are given below (Table 1.1).

Table A1 in the Appendix gives more accurate values of the velocity of sound,
and other constants of additional materials. It should be noted here that the most
commonly used frequency, 2 MHz in the case of longitudinal waves in steel, the
most common material, corresponds to a wave length of about 3 mm. This at the
same time gives an idea of the dimension of a given flaw which can still be detected
reliably when using this frequency. Furthermore it should be kept in mind that for
longitudinal waves the ratio of the wavelengths in water and steel is fairly accu-
rately 1:4.

In the case of plane and spherical waves sound pressure and particle amplitude
are connected to each other by the relation (see [2])

p = gcwé = ZwE 1.3)
Table 1.1
Frequency Wavelength (mm) Wavelength
MH:z in steel in water
Longitudinal waves Transverse waves
(¢; = 5.9 km/s) (¢, = 3.2 km/s) (c = 1.5 km/s)
0.5 12 6.5 3
1 6 3 1.5
2 3 1.6 0.8
4 1.5 0.8 0.4
6 1 0.6 0.25
10 0.6 0.3 0.15
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if the product of density and velocity of sound is abbreviated gc= Z and called
acoustic impedance (specific acoustic impedance). Materials with high acoustic im-
pedance are called sonically hard in contrast with sonically soft materials. Steel with
Z=45%10°Ns/m® is sonically harder than water with Z = 1.5 X 10° Ns/m?
(cf. Table A1).

Although the sound pressure is, from our point of view, the most important
quantity of the sound field, the intensity of a wave is nevertheless sometimes also of
interest. In the case of plane and spherical waves it is related to the sound pressure
or the amplitude as follows:

2 1

L =Zze. 1.4)

1

=7

The intensity is thus proportional to the square of the amplitude of the sound pres-

sure. All relations apply equally to longitudinal and transverse waves and it is only

necessary to insert the applicable value of the acoustic impedance with the correct

velocity of sound. For longitudinal waves one derives from Eq. (1.3) the sound pres-

sure as force per unit surface at right angles to the wave front, and for transverse
waves as shear force per unit surface parallel to the wave front.

Sound pressure is here understood to be exclusively the alternating sound pres-
sure. In sound fields there occurs in addition a continuous pressure, the sound-ra-
diation pressure, which in the case of liquids for instance produces a flow and
which propels suspended particles away from the source of sound. This is of no in-
terest in the testing of materials.

In Fig. 1.3 the amplitude & of the particles has been chosen to be very large for
the sake of clarity, viz. 10 % of the wavelength:

I3 J
= 1.5
A Jan2oc? (1-5)

In air with the density ¢ = 1.3 kg/m? and the velocity of sound ¢ = 330 m/s, a value
of 10% is reached only at intensities of J = 107 W/m?, which is among the highest
values reached to date for very brief periods only. In liquids and in solid bodies the
amplitudes would be much smaller for example in water 0.04 % of the wavelength.
In reality the generation of such high amplitudes is impossible because at the enor-
mous compressional and tensile forces of about 6 X 106 N/m? (= 60 bar) cavitation
occurs. When testing materials, an intensity of 10 W/cm? is regarded as already very
high, but in steel it produces only an amplitude of 1.8 X 107%4, or about 2 milli-
onths of the wavelength.

The velocities of the various kinds of sound waves can be calculated from the
elastic constants of the material concerned, that is the modulus of elasticity E
(measured in N/m?), the density g in kg/m?, and Poisson’s ratio u (a dimensionless
number),

for longitudinal waves:

_ |E 1-p
a= ‘/Q A+p)(1-2u)° (1.6)



14 1 Ultrasonic Waves in Free Space

for transverse waves:

= \/% ﬁ = 1/—2— (Modulus of shear G). a.n

The two velocities of sound are linked by the following relation:

_ /I—Zu
G =q 20-w) (1.8)

For all solid materials Poisson’s ratio 4 lies between 0 and 0.5, so that the numeri-

cal value of the expression
/ 1-2u
20w

always lies between 0 and 0.707. In steel and aluminium

u =0.28 and 0.34, respectively,

—2— = (.55 and 0.49 respectively.
Calculated roughly for both substances, the velocity of transverse waves is half that
of longitudinal waves.

Regarding the velocity of sound as a material constant, it should here also be
mentioned, that the values given in the Table A1l represent true material constants
only for materials having an amorphous, vitreous structure. In crystalline materials
the elastic properties usually differ in different crystal directions, and therefore so
do the velocities of sound. The values in the Table are simply mean values for ran-
dom agglomerations of crystals and in practice deviations from these can easily oc-
cur if a given grain orientation is preferred, i.e. if the material has a texture. It can
be recognized by the differences in velocity of sound in different directions of the
sample concerned. Formulae valid in the case of anisotropy and texture are listed
in [27, Section S 11]. The elastic anisotropy is particularly pronounced in copper,
brass and austenitic steel.

In addition the velocity of sound changes in heterogeneous bodies and is
usually reduced by a small admixture of a foreign substance. A similar effect is pro-
duced by gas pores (for example in porcelain) where porosity can be detected in
practice by a reduced velocity of sound.

Finally the velocity of sound depends on both internal and externally applied
stress in the material both of which can be measured by this effect (cf. Section 33).
In solid substances any temperature dependence is, for practical purposes, insignifi-
cant but it plays a definite role in the case of measurements in liquids. The longi-
tudinal velocity of steel decreases with the temperature by about 1 m/s per degree,
on average up to 1200 °C, cf. [S. 113]. It increases in water by 3.05 m/s per degree in
the range between 10 and 30°C [2].

In Eqgs. (1.6) and (1.7) the frequency term does not occur, indicating the veloci-
ties are independent of the frequency, and are therefore free of “dispersion”. This
fact is very important for the use of ultrasonic pulses, which consist of a band of fre-
quencies (cf. Section 2.6). But is valid only for homogeneous materials (cf. Sec-
tion 6.2 and 33.3).



2 Plane Sound Waves at Boundaries

2.1 Perpendicular Incidence on Single, Plane Interfaces

Analysis of a wave in an infinitely extended substance is possible only theoretically
because in practice every substance terminates somewhere, i.e. it has a boundary.
There the propagation of the wave is disturbed. If the material concerned borders
on an empty space, no wave can go beyond this boundary because the transmission
of such a wave always requires the presence of particles of material. At such a free
boundary the wave will therefore return in one form or another. At a smooth boun-
dary one then speaks of reflection, and at a rough boundary of scattering. In this
connection the roughness of the boundary should be measured in terms of the
wavelength. If another material is beyond the boundary, and adheres to the first
material so that forces can be transmitted, the wave can be propagated into it, al-
though usually in a more or less changed direction, intensity and mode.

There are three cases where boundaries have a strong influence on the propaga-
tion of sound, when testing materials:

— The wave has to penetrate boundaries when passing from a generator into a
specimen and vice versa when being received.

— Defects within specimens are detected by the effect of their boundaries on the
wave (reflection or transmission).

— Also other boundaries of the specimen may influence the propagation by inter-
fering reflections or by intentional guiding (for example in plates or rods) or by
reflecting the wave into areas otherwise not accessible.

Firstly we will consider the simple case of a plane wave incident on a perpendi-
cular, flat, smooth boundary. For reasons of symmetry only plane waves can then
be propagated at right angles to the boundary, viz. a reflected wave which opposes
the incident wave, and a transmitted wave.

Let us calculate their sound pressures. For this we require the acoustic imped-
ance of the two materials Z, and Z,.

Material 1 Material 2
Z,=p,0 Z,= 0,0
Incident wave Transmitted wave
Sound pressure p, Sound pressure pg
————e > —_—

Reflected wave
Sound pressure p;
—_—
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We refer the sound pressures of the reflected and the transmitted waves to the pres-
sure of the incident wave and form the ratios

PR and 2-p
D D

€ e

R and D are the coefficients of reflection and transmission, respectively, of the
sound pressure and both are dimensionless numerical values.
We can then derive (cf. [34]):

Zz - Z] _ 2Z2

R=Z, vz = Z+Z,

2.1
As an example we shall calculate R and D for the interface steel water. According
to Table A1 we have for longitudinal waves

Z, =45 xX10°Ns/m? (steel)

Z,=15%10°Ns/m*® (water).
Thus
_15-45 _2x15

R=15725=709%, D=73577s5

=0.065.

Expressed as percentages the reflected wave has —93.5% of the sound pressure of
the incident wave and the transmitted wave 6.5 %, the negative sign indicating the
reversal of the phase relative to the incident wave. If at a given instant the incident
wave has just reached the positive maximum of the sound pressure (increased pres-
sure), the reflected wave has at the same instant its negative maximum (reduced
pressure) at this boundary. This case is shown in Fig.2.1a.

Sound pressure Sound pressure
p 2
Steel } Water Water | Steel
-7 Reflected 2 Transmitted
wave Incident wave
; ; wave
; ransmitte
Incident wave
wave —
——
R
By
Reflected
wave
L — 7 .._7_.
Z
a 4 b

Fig.2.1. Sound-pressure values in the case of reflection at the interface steel/water: incident
wave in steel (a) or in water (b)
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If, in the reverse case, the wave coming from water strikes steel, an exchange of
Z, and Z, gives
R = +0.935, D=1.935.

Since R is positive, incident and reflected wave are in phase. The transmitted wave
has 193.5% of the sound pressure (Fig.2.1b).

In ultrasonics amplitude (and intensity) ratios are measured in decibels (dB)
(cf. Section 6.1). For amplitudes of sound pressure p (or intensities J) the following
definition applies:

ratio in decibels = 20 1g 2> dB (= 10 1gidB> .
D, I,

Applying this to the values of the factors of reflection and transmission in the above

example, one obtains for the transition steel/water:

|[R|=-0.58dB (0.58 dB decrease of the reflected amplitude compared with the
incident),

|D| = —23.81dB (23.81 dB decrease of the transmitted amplitude compared with
the incident).

For the reverse transition from water to steel one obtains:

|R|=—-0.58dB,

|D| =+574dB (5.74dB increase of the transmitted amplitude compared with
the incident).

At first glance a sound pressure exceeding 100 % seems paradoxical and one su-
spects a contradiction of the energy law. However, according to Eq. (1.4) the inten-
sity, i.e. the energy per unit time and unit area, is not calculated from the sound
pressure (squared) only but also from the acoustic impedance of the material in
which the wave travels. However, since this impedance in steel is very much greater
than in water, the calculation shows that the intensity of the transmitted wave is
very much smaller there than in water in spite of the higher sound pressure.

The balance expressed in intensities calculated for a given boundary in the case
of perpendicular incidence gives

Je=Jr+Jd

i.e. the incident intensity appears again as the sum of the reflected and transmitted
intensities, as required by the law of conservation of energy. However, in the case of
sound pressure one has

Detp,=py or 1+R=D

as is confirmed when recalculating the above two cases.

Phase reversal, characterised by a negative value of R, always occurs in the case
of reflection from the sonically softer material. However, since the phase value is
usually of no interest when testing materials, we shall generally omit the negative
sign in what follows.

Disregarding the sign, the reflecting power is independent of the sequence of
two materials but not, however, their transmittance.
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In the literature the coefficients of reflection and transmittance are frequently referred to
the intensity (Bergmann [2]) or also to the amplitude of the particle motion (Schoch [35]),
which can easily lead to misunderstandings. In this discussion these quantities are exclusively
referred to sound pressure.

Table A2 gives values of the coefficient of reflection for certain interfaces be-
tween solid and liquid materials, which are of interest in the testing of materials at
perpendicular incidence. When measuring these values, which in this case were cal-
culated from the acoustic impedances, higher figures may be obtained if for in-
stance the two materials do not completely “wet” each other. For instance, mercury
does not wet bright steel without taking special precautions (oiling or amalgamat-
ing), so that an erroneous total reflection results.

Compared to liquid and solid materials, gaseous materials have a very low
acoustic impedance. For air it is 0.0004 X 10° Ns/m?3, so that for the interface steel/
air the coefficient of reflection differs from the value 1 only by about 2 X 1075,
Where only sound phenomena in liquid or solid materials are considered, inter-
faces with air can therefore be regarded as interfaces with vacuum, and are called
free boundaries.

Equation (2.1) is also valid for transverse waves. Since, however, the velocity of
sound in liquids and gases is zero for transverse waves, a transverse wave is always
completely reflected (coefficient of reflection = 1) in a solid material at its interface
with a liquid or gaseous substance. For transverse waves the formulae are therefore
of significance only in the case of solid/solid interfaces.

2.2 Perpendicular Incidence on Multiple Interfaces;
Plates and Gaps

In addition to the single interface between two materials of large dimensions, the
double interface, as in the case of a plate or a gap, is of interest for the testing of
materials. For example when sound is transmitted through a sheet immersed in
water, or through a crack in a solid body. The wave coming from material 1 reaches
the plate consisting of material 2 and is split into transmitted and reflected waves.
After passing through the plate, the transmitted wave is split again at the second in-
terface, and so on, the result being a sequence of reflections in both directions in-
side the plate. On either side a sequence of waves leaves the plate which are super-
imposed and whose total sound pressure has to be determined. This cannot be done
simply by adding the sound pressures according to Eq.(2.1) for each individual
split wave. If the incident wave is of unlimited length, the individual waves are in-
tensified or weakened, depending on the phase position, when they are superim-
posed, the result being interference.
Using for the ratio of the two acoustic impedances the abbreviation

%

m=
z,’
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d for the plate thickness, and A for the wavelength in the plate material 2, one ob-
tains (see also Bergmann [2]):

Dplate = 1 ]
\/1 +1 (m —L>2 sin? 2nd
4 m i
—1_ ( _ i)z - 21Td (22)
R _ 4 m s 1
plate ) +—1_ (m __1—>2 Sinz 21td :
4 m A

Because of the sine functions, both expressions are periodical, i.e. their values fluc-
tuate regularly between fixed limits with increasing thickness.

Minima of R and maxima of D occuratd/A=0, 1/2, 2/2, 3/2 etseq. and

maxima of R and minima of D occur at d/A=1/4, 3/4, 5/4 et seq.

Figure 2.2 shows the transmittance of a steel plate and a Perspex plate in water,
plotted against the product of the plate thickness d and the frequency f. At the
maxima both plates show complete transmittance and therefore no reflection
(D=100%, R =0).

The presentation of Fig.2.2 uses the frequency instead of the wavelength be-
cause usually the former is given when testing materials. For a given frequency the
abscissa can be used as a scale of the plate thickness, or alternatively if the thick-
ness is given, as a scale of the frequency.

Example. A steel sheet with a thickness of 1 mm transmits completely at the exact
frequency 2.95 MHz. To permit undisturbed and reflection-free passage of a fre-
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quency of 1 MHz partitions of Perspex can be used having thicknesses of 1.37 mm
or 2.74 mm or 4.11 mm.

In the case of steel immersed in water, and similarly for other materials having
large acoustic impedance ratios, the transmittance ranges are very small, as in fact
Fig. 2.2 shows. Near these points even a small change in plate thickness, or ultra-
sonic frequency, produces a pronounced drop in transmittance. This is one of the
great difficulties in the practical testing of materials with continuous ultrasonic
waves.

Since Eq. (2.2) is valid for arbitrary materials 1 and 2, it can also be applied to a
sheet of air within a solid body, which in the form of a crack in a given test object
plays an important role in the testing of materials. Theoretically the result obtained
is a curve of the transmittance similar to that shown in Fig.2.2 for a steel plate in
water, with the difference that the maxima are spaced much more closely at about
1/20 of the distance, and additionally they are so narrow that on the scale used in
Fig. 2.2 they could only be indicated by extremely narrow lines. Of practical import-
ance is only the drop from the first transmittance maximum at zero thickness, in
the case of very narrow gaps. The remaining maxima could only be obtained with
carefully aligned coplanar gap faces at extremely constant frequency.

The result is shown in Fig. 2.3 for the transmittance, and in Fig.2.4 for the re-
flection, for a given gap in steel and in aluminium if the gap is filled with air and
water, respectively. The scale for the thicknesses is logarithmic so that very narrow
gaps can be included in the picture. At a frequency of 1 MHz for example this scale
covers the range from 1072 to 1 mm.

Firstly it should be noted from Fig.2.4 that even at 1 MHz a gap of 10" ®mm
filled with air produces a reflection of 1% which is readily measurable. This is the
principle of the method for detecting cracks in solid bodies by reflected waves.
However, with such a fine crack, the transmittance could not be distinguished from
that of a specimen without crack since according to Fig.2.3 it remains practically
unchanged at 100 %.

However, an air gap of 1073 mm is purely hypothetical since even the most ac-
curate end gauges, if pressed together, still have a separation of 1074 to 1073 mm,
and according to Fig.2.4 such a gap should reflect almost 100 %. However this is by

100
% N MW
80— Air Water

\

? 60}~ v
[y 1 Sfee/\ Alum. ] Sfee/\ Alum.
AN 1\
20 & N 5
N \\ { NV
070-5 507 50°¢ 50% s507% 510 502 107 mm-MHz
d-F—e

Fig.2.3. Transmittance of a gap in steel and aluminium when filled with air and water, respec-
tively, plotted against the product of gap thickness and frequency
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Fig.2.4. Reflection by a gap as in Fig.2.3

no means the case because even if it is cleaned most carefully, a foreign layer ap-
parently remains on the surface which reduces the reflection and increases the
transmission. The pronounced effect of a liquid in the gap is clearly shown by
Figs.2.3 and 2.4, which theoretically is equivalent to a reduction of the gap width
by four orders of magnitude.

Thin air gaps between glass plates can be measured very precisely by optical in-
terference methods and this method has been used to measure the influence of the
gap thickness on ultrasonic reflection and transmission.

Clark and Chaskelis [249] have found the values in Fig. 2.5. The reflectivity was
much lower than theory indicates but higher than the values of Tarnoszy [1506] and
Szilard [1496], probably because of the much higher cleanliness of the surfaces.
Nevertheless Clark and Chaskelis could still detect air gaps of 20 um by reflection
using frequencies between 5 and 12 MHz. Clark et al. [249, 250] have also mea-
sured the reflectivities of liquid-filled gaps for longitudinal and shear waves.

Theoretically, a hairline crack of 1 um in steel which is filled with oil can still be expected
to reflect 6% at 1 MHz, which would be quite adequate for its detection (24-dB reduction in

the reflected amplitude compared with the incident; the acoustic impedance of oil is similar
to that of water and thus has a similar influence on the reflection). For materials with an
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acoustic impedance lower than that of steel the reflection for a given gap width is weaker, for
example in the case of small gaps in aluminium it would be only approx. one third. To coun-
teract this effect it would be necessary to use an increased frequency, a four-fold frequency in-
crease (to 4 MHz) giving a reflectivity equal to that of steel at 1 MHz. In general, therefore,
higher frequencies are better suited to the detection of fine cracks. This is also confirmed by
the experiments described in [249] and [250].

The knowledge of the behaviour of thin gaps with respect to ultrasonic waves is
important in the testing of materials, because some defects have the form of thin
layers or narrow gaps, as for example lack of bonding when using welds or adhe-
sives. It must not be forgotten also, that an air gap between transducer and speci-
men prevents the transfer of ultrasonic waves and it has to be replaced by a liquid
layer (coupling liquid). Therefore what is favourable for the detection of defects is
disadvantageous for coupling.

The above discussions all refer to the reflection and transmission of infinitely
long waves, i.e. continuous waves. It is, however, important to have a clear concep-
tion of the differences which arise in the case of short wave trains, i.e. so-called
pulses of only a few oscillations.

The length of the wave train does not occur in formula (2.1) for the reflection
and transmission at a given interface. It is, however, necessary to ensure that the
reflected and the transmitted waves do not later return to the interface after an ar-
bitrary number of reflections and thus disturb the process by interference. In the
case of continuous waves this is in fact often not very easy to prevent.

The conditions are quite different, however, for the reflection and transmission
in the case of a plate according to Eq.(2.2). The interesting behaviour of a plate in
an acoustic field depends precisely on the disturbances caused by interference in a
very long wave train. If the wave train is so short that it cannot “bite its own tail” af-
ter a single reflection in the plate, no interferences are produced. In this case a
given incident pulse is split into a series of reflected and transmitted pulses com-
pletely separate and mutually independent. Each of these can be calculated accord-
ing to the simple formula (2.1) by applying it repeatedly to the individual reflection
and transmission phenomena. As a result of the repeated splitting, the sound pres-
sure of the pulse sequence then decreases continuously, but remains completely in-
dependent of the thickness of the plate.

In the transition range between short pulses and continuous waves the wave
train partially reaches its own tail, resulting in interference over a certain section of
its length. In that case a sequence of connected wave trains with fluctuating ampli-
tude leaves the plate on both sides, the fluctuations depending on the plate thick-
ness and the frequency.

In the case of the above-mentioned thin gaps every pulse, even a short one, is
equivalent to a wave train of long duration because the width of the gap is in this
case much smaller than one wavelength. The results therefore apply also to pulse
transmission [249, 260].

The problem of obliquely incident sound pulses on thin layers is treated in [510]
and [695]. Regarding the optimum thickness of the coupling gap see [396, 1369].

Attention is also drawn to the fact that a smooth transition between the proper-
ties of two different materials in a given boundary layer changes the results consid-
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erably, and reflection may then be completely absent. In the above discussions it
has always been presupposed that the transition is sharply defined, or at least very
short compared with one wavelength.

2.3 The Law of Refraction for Plane Waves; Mode Changing

If a plane sound wave strikes a plane interface obliquely, at an angle of incidence a,
to the perpendicular (Fig.2.6), reflected and transmitted waves arise as in optics.
The transmitted waves are also called refracted waves because their direction has
changed relative to the direction of incidence. The angles of emergence o, und oty
depend on the angle of incidence and on the velocities of sound of the two materi-
als. The acoustic pressures, which in the case of perpendicular incidence could still
be determined by relatively simple formulae, have now become functions of the
angles, the velocities of sound and the acoustic impedances. They are tabulated in
the Appendix. In contrast to optics, a new phenomenon has now been added in
which one kind of wave can be transformed into another, for example longitudinal
waves into transverse waves and vice versa.

The transformation of one kind of ultrasonic wave into another is called mode
changing. It happens quite often in testing materials, partly intentionally, partly
troublesome.

The directions of the reflected and the transmitted waves are determined by the
general law of refraction

singg _ ¢

. 2.3
sin o (874 ( )

This law is called Snell’s law and was first stated by Snell for optics. It is however,
valid for all types of wave propagation.

In Eq.(2.3) I and II are two entirely arbitrary waves linked by a reflection or re-
fraction process, and having the velocities of sound ¢; and c¢;.

Example. Let I be the incident wave in Fig. 2.6 with &, and c; (in material I), and let
II be the transmitted longitudinal wave with &4 and c,. Thus

sin, ¢

sinag ¢

With «, given, oy is determined by:

. C .
sin o = - = sin e, .
1

Fig. 2.6. Reflection and refraction of a plane wave at the plane
interface between materials 1 and 2 at oblique incidence
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Example. Let 1 be water with ¢; =1.5km/s and let 2 be steel with approx. 6 km/s, thus
c/cy = 4. At a 10° angle of incidence, sin &, = 0.17. Therefore

sinog=4x0.17 = 0.68,
(221 =43°.

In contrast to Fig. 2.6 the transmitted wave emerges in this case at an angle greater
than the incident angle, the greater velocity of sound being associated with the
greater angle. In Fig. 2.6 material 2 has therefore a velocity of sound less than that
of material 1.

If in Eq.(2.3) waves I and II are considered as incident and reflected waves in
the same material and if both are either longitudinal or transverse waves, they will
of course have the same velocity of sound ¢;. Consequently

sin o,

- =1 and a. =«
sin &, e e

i.e. the angles of incidence and reflection are identical. However, the reflected
wave can be of a different mode and in that case, although it occurs in the same
material as the incident wave, it nevertheless has a different velocity of sound and
therefore also a different angle. The general law, Eq. (2.3), however, remains valid.
Example. A longitudinal wave in steel strikes a boundary at «,=60° with
¢ = ¢, = 6 X 10° m/s. A reflected longitudinal wave has the same. Since, however, a transverse
wave with ¢, = 3.2 km/s occurs in steel, a second wave is reflected as a transverse wave accord-
ing to the law

sine, _ ¢

- =0.55.
sina, c.

Therefore
sina, =0.55 X 0.87 =048,
o, =29°
The slower transverse wave has a smaller angle than the longitudinal wave reflected at 60°.

The same applies to the transmitted waves. Provided transverse waves can occur
in the material considered, as is the case for all solid bodies, both types of wave are
in general produced but at different angles.

2.4 Sound-Pressure Values after Reflection and Refraction

The law of refraction merely gives information regarding the direction of refracted
or transmitted waves but says nothing about their sound pressures. A few examples
with combinations of different materials will clarify the situation. The description
is much simpler for gaseous or liquid materials as compared with solid materials
because gaseous materials behave in practic like empty space as long as we are only
interested in the process in the contiguous liquid or solid material, and because
only the longitudinal wave can occur in liquid materials.

With the problem of two contiguous materials, four cases of increasing com-
plexity can be distinguished:
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Material 1 Material 2

a) liquid or solid gaseous (free boundary)
b) liquid liquid

¢) liquid or solid solid or liquid

d) solid solid

Case a) Liquid or solid/free boundary can quickly be dealt with for liquid. There is
only one longitudinal wave which for all angles of incidence is totally reflected at
the boundary.

Figure 2.7 shows the case solid/gas for an incident longitudinal wave and
Fig. 2.8 for a transverse wave. Let us visualise in the left-hand quadrant the incident
wave concerned, with sound pressure 1 and at angles between 0 and 90°. In the ad-
jacent quadrant the same kind of wave (therefore with the same angle) is reflected,
the curve indicating the amplitude of the sound pressure for each angle of inci-
dence. A further quadrant shows the simultaneously reflected wave of the other
kind. The vectors for one particular example are drawn in each diagram and the
correlated angles are shown separately on the right.

For a more quantitative evaluation the curves for the coefficients of reflection
are given in the Appendix together with the formulae.
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Fig. 2.7. Reflection at the interface solid/gas for an incident longitudinal wave (steel/air)
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Fig.2.8. Reflection at the interface solid/gas for an incident transverse wave (steel/air)
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It is worth noting that in Fig. 2.7 the incident longitudinal wave is reflected only
very weakly between 60° and 70°. Instead, a strong transverse wave occurs below
about 30°.

In the case of an incident transverse wave (Fig.2.8) a similar reflection gap oc-
curs at about 30°. There one finds a strong longitudinal wave in a broad sector up to
90°. A rather interesting phenomenon occurs immediately beyond the 30° angle of
incidence since according to the law of refraction, a value greater than 1 would be
obtained for the sine, to which of course no real angle belongs. From our point of
view this is merely a warning that the wave concerned ceases to be propagated
freely. Consequently, the remaining wave must acquire the full sound pressure of
the incident wave, i.e. the transverse wave is reflected totally in the sector beyond
33.2°.

The law of refraction (Fig. 2.8, right) reveals that this can always occur if the ve-
locity of sound of the reflected (or transmitted) wave is greater than that of the inci-
dent wave.

In view of the fact that the magnitudes of the sound pressure of the reflected
and refracted waves differ greatly it was necessary, for the sake of clarity, to use dif-
ferent scales in Figs.2.7-2.11. As explained already in Section 2.1, a sound pressure
of the incident wave greater that 100 % does not contradict the law of energy. How-
ever, when evaluating the diagrams and the related tables caution is indicated near
a grazing incidence and reflection, i.e. at 90°: in reality the large amplitudes indi-
cated will not be realised due to conversion into a wave with reversed phase which
is reflected at the interface.

Case b) Liquid/liquid. The case of two layers of liquid is of no practical importance
in the testing of materials and it is therefore not discussed here. For formulae see
Appendix.
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Case c) Liquid/solid and solid/liquid is of importance in the practical testing of mate-
rials because, when locating defects in solid test specimens, an ultrasonic wave
must frequently be beamed into the material at an angle oblique to the surface. To
achieve this angle, use is frequently made of the refraction between the material of
the test specimen and a liquid. Since in this case, because of the occurrence of
transverse waves, the conditions are more complex than for instance in the case of
the refraction of light rays in optics, they will be explained in Figs.2.9-2.11, using
as examples water/aluminium and aluminium/water. The relevant formulae and di-
agrams are found in the Appendix.

In Fig. 2.9 we have a longitudinal wave travelling in water and striking the inter-
face. At small angles of incidence (cf. the diagram showing incidence at 10°) a lon-
gitudinal wave enters the aluminium with sound pressure and angle increasing rap-
idly with increasing angle of incidence. Simultaneously, a weak transverse wave
(quadrant lower right) is formed with a maximum at 20° in aluminium. The angle
of incidence of 13.56° is the so-called first critical angle for the longitudinal wave
because it disappears at this point from the aluminium. Immediately, however, a
stronger transverse wave appears and this remains with increasing sound pressure in
the aluminium from about 30°-90°, while the angle of incidence increases up to
29.2°. This is the second critical angle, that is the critical angle for the transverse
wave.

Above this range of incidence no wave whatsoever can be found in the alumi-
nium and it is of no interest therefore for the testing of materials, the incident lon-
gitudinal wave being totally reflected. Of more importance is the region between
the two critical angles because only the transverse wave is available there when test-
ing solid materials.

Figures 2.10 and 2.11 show the reverse wave path, from aluminium into water.
This is of importance for the pulse echo testing of materials, in order to answer the
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Fig.2.10. Interface aluminium/water with incident longitudinal wave
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Fig.2.11. Interface aluminium/water with incident transverse wave

question how much of the wave beamed into the test specimen returns from it as an
echo.

Case d) Solid/solid. In this most general case both longitudinal and transverse waves
occur in the two contiguous materials. Consequently, the reflection formulae and
the presentations become more complex and only a few individual cases have
therefore been calculated.

As far as the acoustic contact between the two materials is concerned, two cases
can again be distinguished:

d 1) Solid contact, i.e. the two materials are connected to each other by welding, sol-
dering or by a thin solid cementing layer.

d2) Liquid contact, i.e. the two materials are connected by a thin layer of liquid,
which can transmit compressional forces but not, as in the case of d 1, shear forces.
In practical testing of materials this case is by far the most important one but atten-
tion is drawn to the fact that if high compressional forces are applied (e.g. with a
shrink fit) the two surfaces, owing to their roughness, may interlock to such an ex-
tent that shear forces also can be transmitted, thus representing physically case d 1
(see Kithn and Lutsch [869]).

In practice refraction at the interface solid/solid with liquid coupling finds
wider application when beaming transverse waves obliquely into the material. Fi-
gure 2.12 shows the acoustic pressure amplitudes of the refracted transverse wave
and the reflected longitudinal and transverse wave for the transition of a longitudi-
nal wave from perspex into steel, as calculated by Kiihn and Lutsch [869]. Only the
region between the total reflection of the longitudinal and transverse waves, which
is of most practical interest, is shown.

If we go from a liquid contact (case d 2) to a solid one (case d 1) we get the dot-
ted lines in Fig.2.12.

They show that both the sound pressure values for the refracted transverse wave
and the reflected longitudinal wave decrease in favour of the reflected transverse
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Fig.2.12. Interface Perspex/steel. Incident longitudinal wave in Perspex

wave. The pronounced dependence of the coefficient of reflection on the coupling
conditions in the case of the longitudinal wave in Perspex allows a practical coup-
ling check [953]. For comparison the reflection of the longitudinal wave at the free
Perspex interface is therefore also shown (dash-dot-dash line).

When using the echo method for testing purposes it is desirable to transmit as
much as possible of the sound wave into the test specimen and to receive the maxi-
mum possible echo. According to Fig.2.9 approx. 80 % of the sound pressure of the
incident wave is lost in the reflected wave. Also in the reverse process as shown in
Figs.2.10 and 2.11, large portions of the two types of wave are lost again through
reflection when leaving the solid body. Figure 2.13 answers the question how to de-
fine a measure for the transmission losses. Assuming a large plane reflector in the
second medium the amplitude of the echo is the product of the transmittances in
both directions, and it can be called the echo transmittance for this specific combi-
nation of materials and angle of incidence. Within the solid body we can operate
either with the longitudinal or with the transverse wave, having therefore two trans-
mittances E;, and E,,. Both are shown in Fig. 2.14 for several combinations of mate-
rials.

As in the previous case, it is assumed that the sound pressure of the incident

wave is 1. The length of the vector then indicates the sound pressure of the return-
ing wave.

Liguid
Sotid

Fig. 2.13. Explanation of echo transmittance at an interface
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Fig.2.14. Echo transmittance at various interfaces. a water/aluminium; b water/steel; ¢ Per-
spex/aluminium; d Perspex/steel

For water/aluminium (Fig.2.14) an echo is obtained via the longitudinal wave
from the aluminium at small angles of incidence below 13.56°, containing up to
30% of the incident sound pressure. At the same time the transverse wave gives
only a weak echo of less than 10% (shaded sector). At greater angles of incidence
up to 29.2° an echo is obtained only via the transverse wave, with a good efficiency
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of up to nearly 50 %. Figure 2.14b shows the corresponding values for water/steel.
Because of the greater difference in sonic hardness, the efficiency is in this case
smaller. As far as the combinations liquid/metal are concerned, it can be stated
quite generally that at angles of up to about 30° in metal it is better to operate with
longitudinal waves but above about 35° the transverse wave becomes more favou-
rable, a fact widely exploited in the testing of materials. Above 80° the conditions
are bad for both kinds of waves.

The corresponding curves for the case Perspex/metal are shown in Figs.2.14¢
and d, but only for the transverse wave in metal, for which so far the two different
conditions, viz. solid and liquid contact, have been calculated (Kiihn and Lutsch
[89]). In the same way as in Fig.2.12 the efficiency is surprisingly better for liquid
contact than for solid contact. Owing to the improved matching of the acoustic im-
pedances, it is of course also better than for the case liquid/solid. The combination
Perspex/aluminium returns more than 60 % of the acoustic pressure at the most fa-
vourable angle with liquid contact. For quantitative evaluation see Formulae and
Diagrams in the Appendix. For further values of echo transmittances for other ma-
terials refer to Lutsch und Kiihn [946].

The foregoing theory of echo transmittance for unlimited plane waves cannot
explain all effects in materials testing because of the use of pulses and spatially li-
mited waves, i.e. beams.

For frequencies between 20 and 80 MHz, and for short pulses, values have been
calculated by computer for the case of coupling a generating crystal via a layer of
glycerine to steel in [1557].

Regarding the influence of the thickness of a coupling layer at frequencies be-
tween 1 and 20 MHz see [1185]. This paper also investigates the influence of a
wedge-shaped layer as well as the viscosity and the coupling pressure. Also for the
influence of surface roughness see [396, 496, 1544].

Where transverse waves have been discussed in this chapter we have concerned
ourselves exclusively with those having a plane of oscillation parallel to the plane of
incidence (i.e. plane of drawing in the diagrams).

Since they are generated by refraction of longitudinal waves (Fig.2.15) one can
understand this best by considering that the direction of particle movement in the
longitudinal wave is parallel to the plane of incidence. Therefore no particle move-
ment perpendicular to it can arise.

The designation of a transverse wave as parallel or perpendicularly polarised
only makes sense if a particular plane is defined as reference plane, as for example

r
L s /L L L
Solid Liquid
Liquid - Solid , Fig.2.15. The oscillation plane of a
N split-off transverse wave is always par-
T allel to the plane of incidence
(= plane of the paper)
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the plane of incidence in the case of refraction. Within an infinite rigid material all
directions of polarisation are identical, but in the case where it has a plane boun-
dary, or if the material is not isotropic, the two directions of polarisation are not
identical and we have to distinguish three fundamental types of free wave. This
case also happens if the material is stressed in a particular direction, when the two
transverse waves may even have different velocities (see Section 33.2).

A wave polarised parallel to a plane surface of a specimen is often called shear
horizontal wave or SH wave, from assuming that the surface is lying horizontally.
The other type, as in Fig. 2.15, polarised parallel to the plane of incidence as refer-
ence plane is consequently, but not very meaningfully, called shear vertical wave or
SV wave. SV waves, easily generated by the refraction of longitudinal waves, are
more frequently used in materials testing than SH waves. These latter are only gen-
erated by rigidly coupled transverse wave generating probes or by electromagnetic
excitation.

The SV wave at an interface follows the refraction law whereas the SH wave
does not. At a free interface, or an interface to a liquid, the SH wave is totally re-
flected at all angles of incidence and no mode changing can occur. This is of great
advantage for guiding a wave along surfaces. By oblique reflection of any transverse
wave at a randomly oriented boundary, a transverse wave of any direction of oscilla-
tion may be generated. For the calculation of its further behaviour it has to be sepa-
rated into two components (transverse waves) with polarisations perpendicular to
one another. Regarding measurement of the direction of polarisation see Sec-
tion 16.4 and [1693].

There sometimes arises the need to launch a wave from a solid body via a liquid
layer into another body of the same or similar material (Fig.2.16). The perpendicu-
lar transit has been treated in Fig.2.2. For oblique incidence a longitudinal wave
passes through without a mode change so long as the angle of incidence lies be-
tween zero (perpendicular incidence) and the first critical angle (15° in steel). How-
ever, the liquid layer must be quite thin compared with the wavelength, or interfer-
ence will take place by multiple reflections and lateral beam shift.

An SV wave also goes through in the range of angles beyond the second critical
angle (from 30° to 90° theoretically, but in practice from 35° to 80°). In this case we
have a longitudinal wave within the liquid layer but the other transverse wave (SH
wave) cannot be transmitted.

|
|
lﬁ il ] Il
(SH)
Sotid (sv) I A

Liguid
Solid | T
0—7\?’ L |

|30-90° I

Fig. 2.16. Oblique penetration of a liquid layer between two solids
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2.5 Mode Changing of Incident Sound Beams at Interfaces;
Guided Waves

Up to now we have considered waves unlimited in space and time but in practice
we use beams with a short length of oscillation, i.e. pulses. The direction of a beam
is not exactly defined since it comprises a certain angular range in space, in the
same way that a pulse comprises a certain range of frequencies in time.

That is the reason that certain new effects arise when a beam enters a solid body
(Fig.2.17) and from this will also come the generation of certain new wave modes.

According to Fig.2.12 the critical angle of total reflection for a longitudinal
wave refracted from Perspex into steel is about 28° in the Perspex and 75° in steel.
Shortly before this critical angle is reached a creeping wave (also called head wave)
is split off and is guided along the surface but quickly losing its energy by splitting
off a transverse wave. The creeping wave has the same velocity as the longitudinal
wave.

In Fig.2.17a the transverse wave, arriving at a second free and parallel surface
of the specimen, generates a secondary creeping wave C’ as well as the reflected
transverse wave.

The fact that the incident longitudinal wave is still present at the critical angle,
and that in practice a somewhat smaller angle has to be chosen, can be explained
by the difference between a theoretical unlimited wave and a beam.

The name “creeping wave” is somewhat misleading since the wave is actually as
fast as the longitudinal one. We will later deal with another type of creeping wave,
which is a degenerated surface wave, and therefore the first one would be better
called a longitudinal creeping wave.

Fig. 2.17. The two critical angles of an incident longitudinal-wave beam: a first critical z_m.gle
with the creeping wave C, further transforming into the transverse wave; b second cricital
angle of total reflection with the surface or Rayleigh wave R
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At the second critical angle with total reflection of the transverse wave (at about
58° in Perspex to steel, when the transverse wave in steel also disappears) a surface
wave (called also a Rayleigh wave) is split off (Fig.2.17b). Its velocity along the sur-
face is somewhat smaller than that of the transverse wave and it tends to lose its en-
ergy continually into the liquid coupling medium. This can be prevented by keep-
ing dry the surface immediately in front of the generator and then, on the free
boundary, the Rayleigh wave can travel for long distances damped only by the sur-
face roughness, the absorption of the material and the beam spread.

Both types of boundary wave are used for material testing and can easily be gen-
erated by an incident longitudinal beam.

Another Rayleigh wave is generated if a transverse wave within a solid body
strikes a free boundary at the critical angle of 33° in steel, as in Fig.2.17b from the
lower left.

The damping of the creeping wave cannot be avoided and its useful range is re-
duced to about the width of the incident beam.

Both wave modes are so-called inhomogeneous or transverse damped waves, the
amplitude of the particle movement decreasing perpendicular to the propagation
direction, and the penetration depth being comparable to the wavelength. Both
types of wave are reflected by surface cracks or by edges in their path, which can
both be detected in this way when testing materials. Whereas the creeping wave is
only sensitive to inhomogenities within and beneath the surface and does not fol-
low a curvature, the Rayleigh wave is also sensitive to dirt and liquid drops sticking
to the surface and it follows the surface contour so long as the radius of curvature is
not too small.

At any edge on the surface a Rayleigh wave at perpendicular incidence is partly
transmitted and partly reflected without a mode change. The reflectivity coefficient
depends on the sharpness of the edge and its angle. Only at an edge like a knife will
it be almost 100 % reflected [53].

Both the Rayleigh and the creeping waves can be directly reflected back to the
generator and are there retransformed into a longitudinal wave to give a signal from
the reflecting feature.

Fig. 2.18. A Rayleigh wave at edges. a splitting into a reflected and a transmitted Rayleigh
wave and additionally a diffracted free transverse wave (characteristic of angle only sche-
matic); b on a surface with two parallel edges or a hollow space in shape of a strip or disc. The
reflected free transverse wave has been omitted for clarity
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The Rayleigh wave undergoes a mode change into a diffracted free transverse
wave as illustrated in Fig.2.18a as well as undergoing the beforementioned trans-
mission and reflection at an edge, provided it has the shape as shown.

This SV wave (polarised parallel to the drawing plane) is an example of a dif-
fracted wave, always generated when any wave is incident on a perpendicular edge
and they are therefore called edge waves. Applying Huygens’ principle we have to
imagine the incoming wave generating new elementary spherical waves at points
along the edge. From a free line of sources in space, for example a thin wire), the
diffracted wave would be of cylindrical shape buts at an edge as in Fig.2.18a, the
directional characteristics are more complicated.

From the diffracted wave we can also get echoes from reflectors within the solid
body, but fortunately in most cases they are weak compared with the echo from the
edge itself.

Naturally the diffracted transverse wave in Fig. 2.18 a may be detected at any
convenient surface of the body by a receiver for transverse waves provided its direc-
tion of polarisation is perpendicular to the generating edge.

On the other hand the two transverse edge waves in Fig.2.18b can be received
by the generator of the incident transverse wave. When working with pulses, they
show a distinct time lag between them, from which the separation of the two edges,
or the diameter of the hollow disc, could be measured (for example for an artificial
defect).

For further treatment of edge waves, see Section 2.7.

As distinct from the two free wave types we can describe the waves bound to
surfaces as guided waves. Let us consider the movement path of the particles in a
Rayleigh wave (Fig.2.19). It has the shape of an ellipse with an anticlockwise rota-
tion if the propagation is assumed to be from left to right. The deformation of the
surface is not sinusoidal, as is also the case with waves on the surface of water, but
the form of oscillation becomes increasingly more circular and of smaller ampli-
tude with increasing depth beneath the surface.

If the propagation of a surface wave (Fig.2.20) is limited by an edge parallel to
its beam direction, the particle movement is exclusively parallel to the side wall.

Air [-—— Wave length —-—~‘

Steel

Direction of propagation —=

Fig.2.19. Rayleigh wave on a steel surface. The ellipse of oscillation is shown on the right
(cf.{35]; ratio of the axes: 0.44 to 1)

Fig. 2.20. Rayleigh wave along a right-angled edge
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This means that no phase shift will occur at grazing incidence and therefore the
wave does not cancel itself along the side wall, but is reinforced, and guided, by it.

A wave similar to the Rayleigh wave can exist at the interface between two solid
materials (Stoneley [1475]) and other similar types of wave can be guided in layers
of a solid material coated onto another one (Love [592]). These and other types of
guided wave have not yet found much application in material testing.

For the free propagation of a Rayleigh wave on a surface the solid material must
have sufficient thickness perpendicular to this surface. Otherwise, in case of a plate,
for example, the wave will be increasingly distorted with decreasing thickness. It de-
generates into a Lamb wave (Fig.2.21b and c) and waves of this type are called plate
waves, of which a very simple one, the SV transverse wave is already known to us
(Fig.2.21a). It can be transmitted within plates for long distances because this type
of transverse wave does not undergo a phase shift at grazing incidence.

Of more importance for materials testing are the plate waves of Fig.2.21b and c,
the so-called Lamb waves, especially for the testing of plates. These two are the
fundamental types of Lamb wave, the symmetric (or stress) wave and the asymmet-
ric (or bending) wave and to these also belong an unlimited number of harmonics.

Fig.2.21. Waves in plates. a transverse wave parallel to surface; b and ¢ Lamb waves, symmet-
rical and asymmetrical fundamental waves in aluminium calculated according to [35] (ratio of
axes of oscillation ellipses depending on thickness of plate)
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The particles of the middle zone, or the neutral plane, perform in the case of the
stress wave purely longitudinal oscillations, and in the case of the bending wave
purely transverse oscillations. The other particles oscillate, in the case of both
types, elliptically.

All these boundary waves appear to be new wave types as additions to the two fundamen-
tal ones in free space. Mathematically, they can all be made up from the fundamental ones,

by taking into account the complicated reflections and phase shifts they undergo at the sur-
faces (see p. 38).

Also in other elongated bodies, for example in rods, there can be generated
other types of guided wave. Within round or square rods the dilatational type wave
similar to Fig.2.21a is sometimes used and is called a rod-wave. There are in addi-
tion a large number of bending, torsion or radial waves, together with their harmon-
ics, but they are rarely used for materials testing. For generating such waves the
piezo-electric method is less useful than the electromagnetic one (see Sections 8.4
and 8.5).

For more information about creeping waves see {411, 412, 264, 413, 1680, 1240, 400, 395].

About surface waves; [32, 35, 180, 259]. About Love waves [667]. About plate waves [888, 35,
457, S 187]. About mode changing see the theoretical papers [1373, 145, 180, 1198, 1005, 879].

2.6 Velocities of Guided Waves; Dispersion

The longitudinal creeping wave has the same velocity as the free longitudinal wave.
The SH plate wave (polarised parallel to the surface transverse wave) has the same
velocity as the free transverse wave. The other wave types have velocities smaller
than the longitudinal wave, and they can be calculated from the material constants
E, u and ¢ (Section 1.3). The velocity of the Rayleigh wave is, according to an ap-
proximation by Bergmann {2],

_0.87+1.12pu [£ 1
= 1+u 0 2(1+u)° @4

which gives according to Eq.(1.7)

CR=C 2-811-:—1”12—”— . 2.5)
Thus the Rayleigh wave is always somewhat slower than the free transverse wave,
for steel 92 % and for aluminium about 93 %.

Neither frequency nor wavelength terms appear in Eq. (2.4), just as they are also
absent from Eqgs. (1.6) and (1.7) for the free fundamental waves. This means that
they are free of velocity dispersion. This is true also of the creeping wave but it is by
no means self-evident. We have seen already that the Rayleigh wave has velocity
dispersion, when it travels on curved surfaces. For example at a radius of curvature
r= 34, it is about 10 % higher on a solid cylinder and lower on the surface of a hol-
low cylinder, see also [1375, 15701.
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In addition the Rayleigh wave has some dispersion if the quality of the surface
differs from the base material, for example by surface hardening or stress [168].

Love waves also experience dispersion if a surface layer in which they propagate
has a thickness comparable to the wavelength and this method can be used for the
thickness measurement of layers. Even the fundamental waves experience appreci-
able dispersion in heavily scattering material (cf. Section 33.3).

Additionally the previously mentioned guided waves (e.g. Lamb waves) also un-
dergo dispersion. Their velocities depend in a very complicated way on the mate-
rial, on its thickness and the ultrasonic frequency (cf. Table 9 in the Appendix). For
materials other than steel Pursey [1216] has calculated the velocities for Poisson’s
ratios u = 0.25, 0.33 and 0.375 and values for aluminium are given by Firestone
[457].

Fig.2.22 explains the formation of a Lamb wave from zigzag-reflected funda-
mental waves. For simplicity we illustrate here only the transverse wave. For a nar-
row beam, as in Fig.2.22a, the single sections of the zigzag wave do not influence
one another. With a broader beam (Fig.2.22b) the two sections travelling in the
same direction partially overlap each other, and hence interference may take place.
In Fig.2.22b interference is shown to be destructive and with a broad beam this
would mean extinction takes place. At another angle for the reflected transverse
wave (Fig. 2.22 ¢) the superposition may be constructive and we have a wave combi-
nation giving good propagation.

At first glance it seems strange that such a simple geometrical requirement — that the ref-
lected beams should not cancel each other — demands such a complicated relationship be-
tween plate thickness and the most favourable angle as shown in Table 9 in the Appendix.
This complication results from the fact that in the case of the oblique reflection of sound
beams on surfaces of solid bodies phase shifts occur which in turn depend on the angle.

The relationships become even more complicated when one examines the velocity of
these Lamb waves in a direction parallel to the surface. The phase shift during reflection re-
sults in the reflected beam being transposed relative to the incident beam so that the path of
propagation is not zigzag-like but trapezoidal, see [1125]. The extent of this transposition of
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the beam depends on the angle o and the frequency. It may amount to several wavelengths,
particularly near the glancing incidence of the longitudinal wave (33.2° in steel), with the re-
sult that in the case of plates with a thickness of only a few wavelengths, the velocity differs
greatly from the simple geometrical relation ¢; sin « and ¢, sin  (§ = angle between the longit-
udinal wave and the normal to plate) which could be expected to follow from the elementary
presentation in Fig.2.22. Only at o = 45° does the phase shift, and thus also the transposition
of the beam becomes zero; in this case the simple geometrical sine relation is valid by way of
exception.

In addition to these wave types which manifest themselves as longitudinal and transverse
waves propagated along a zigzag path, thick plates also have Rayleigh waves. If the thickness
of the plate becomes less than the penetration depth of the surface wave, the latter degen-
erates and is split into two branches with different propagation velocities, viz. the branches
marked a, and sy in Diagram 9 in the Appendix. The corresponding mode of oscillation has
already been shown in Fig.2.21. In a certain sense these waves ag and s,, and the surface
wave, are also degenerated zigzag propagations. The wave surfaces are almost perpendicular to
the surface of the plate or are even inclined backwards, against the direction of propagation.
Consequently, the wave beams no longer detach themselves from the surface, the oblique
paths through the plate (/ and II in Fig.2.22) are suppressed, and the wave motion now con-
sists only of the reflection at the plate surface and the continuous conversion of longitudinal
waves into transverse waves resulting from this process. Mathematically this degeneration
corresponds to the change of « from a real to an imaginary quantity; viz. sin o« becomes grea-
ter than 1. As far as the excitation of these wave types is concerned, it should be mentioned
that like the true waves reflected along a zigzag path they can be excited by exploiting the law
of refraction (Eq.(2.3) and Fig.2.6) in which the sine of the angle of refraction is made,
purely formally, greater than 1 (values of sin« in Diagram 9). This results in an entrance
angle in the water or plastic wedge used for excitation which is greater than the total reflection
angle.

For Figs.2.21 and 2.22, as well as for the calculation of the Lamb-wave velocities in Dia-
gram 9, systems of unlimited plane waves of the fundamental types have been assumed. In
practice we have a beam of limited width and in a restricted angular range. This is one of the
reasons why we find rather important deviations between the actual and the theoretical veloci-
ties.

A second reason for these differences arises from the use of pulses rather than of infinitely
long waves. Figure 2.23 shows a pulse shape as it is often used for materials testing.

It consists of not only a single frequency, as assumed for Figs.2.21, Fig.2.22 and Dia-
gram 9, but a band of frequencies which is wider the shorter the pulse. Figure 2.24 makes this
clear where by the summing of only three infinitely long waves of frequencies 0.85; 1.0; and
1.21 MHz we get a wave form approximating to a 1-MHz pulse.

The various different frequencies contained in a pulse which generates a Lamb wave pulse
have different velocities in accordance with Table 9, and they may even be completely sup-
pressed at the given conditions of plate thickness and angle of incidence. Therefore a pulse,
rather short initially, will be increasingly distorted and usually broadened, during its trans-
mission. A certain oscillation, as for example that marked by an arrow in Fig.2.23, becomes
unrecognisable. A measurement of transit time, as for example in distance measurement, is
no longer possible. Examples of the distortion of Lamb-wave pulses are shown in Figs.24.13
and 24.14.

Fig. 2.23. Commonly encountered pulse form when
testing materials
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Fig. 2.24. Synthesis of a 1-MHz pulse composed of purely sinusoidal partial waves of 0.85, 1.0
and 1.21 MHz

For a fuller theoretical treatment of sound propagation in solid materials see
Mason [21], Achenbach [49] and Pollard [30], for guided waves in layered media see
[3] and [S 143], for computer presentations see Nickerson [1119] and Harumi [9].

2.7* Edge Waves

If a free wave within a solid material strikes a discontinuity various additional
waves are generated and they can easily be characterised by the requirement to res-
tore the disturbed wave at all points to the original undisturbed wave in both ampli-
tude and phase. In other words they are required to fulfil the physical boundary
conditions.

Figure 2.18b shows a very simplified case, in which the additional or compen-
sating waves tend to be mostly Rayleigh waves propagating from the disturbing
edge. Additional diffracted waves are also generated which are not indicated in this
diagram and they may be of both the fundamental types. Together with a possible
mode change from Rayleigh waves to free waves, the actual details of the full distor-
tion are quite complicated but fortunately all these additional waves are of low am-
plitude.

We will however consider some specific cases, because the edge waves gen-
erated can be of interest for materials testing techniques.

What actually happens when a free wave is distorted by an obstacle has been
calculated by Harumi [9]; see also [618, S 65].

Example a (Fig.2.25a): Perpendicular incidence of a longitudinal wave on a
plane disc-shaped gap or a strip. The illustrations show the wave fronts of the var-
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RIO

Fig. 2.25. Reflection at a disc, a strip and a hollow cylinder within a solid material to illustrate
edge waves. a perpendicular incidence of a longitudinal wave on a disc; b the same but at
angle of 60°; c transverse wave incident on a hollow cylinder

ious waves at a moment when the incident wave (IL = incident longitudinal) com-
ing from below has already passed the obstacle. The distortion of its wave front is
only indicated qualitatively. Qutgoing from both edges are two longitudinal dif-
fracted waves (RL 1 and RL 2). In the centre below the reflector they combine with
the specularly reflected longitudinal wave (RL) from which they cannot be distin-
guished if viewed in the axial direction, but only by angular observation.

Further compensating waves from the edges are two Rayleigh waves (Ral and
Ra?2) travelling along the surface of the reflector in opposite directions and generat-
ing two transverse edge waves when they arrive at the edges (RT 1 and RT2).

These latter waves are associated with the Rayleigh waves at their origin, but be-
cause their velocity is somewhat higher they seem to originate from a point beyond
the edge. They then combine in the direction of the axis as a reflected transverse wave
(RT). On either side of the axis they can be received as two separate transverse
waves.
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Example b (Fig.2.25b): A longitudinal wave is incident on the disc at an angle
of 60° and the two diffracted longitudinal waves from the edges RL 1 and RL2 com-
bine with the specularly reflected free wave to form the reflection (RL). The two
transverse edge waves RT 1 and RT2 (connected with the two Rayleigh waves on
the surface as in Example 1) combine, at an angle of about 30°, with the reflected
transverse wave which has been generated by mode change from the incident wave
(RT). In the Figure the Rayleigh wave (Ral) is already on the way back from the
right hand edge, where it has generated a further edge wave (RT) but which is not
shown for clarity. In this way we get a sequence of edge waves, decreasing in ampli-
tude from one to the next.

Example c (Fig.2.25c): A transverse wave (IT) is incident on a hollow cylinder
and assumed to be polarised perpendicular to the axis of the cylinder, i.e. parallel
to the drawing plane (SV wave). It generates the two longitudinal edge waves (RL 1
and RL2) originating from both sides of the cylinder. In the direction of the axis
they cannot be detected because their amplitudes here are zero. Their angular char-
acteristics therefore resemble a plum at the exit points on the surface.

At these points further Rayleigh waves (Ra1l and Ra2) are generated surround-
ing the cylinder and further transverse edge waves (RT1 and RT?2) arise at these
points. They are delayed in time compared with the direct reflected transverse wave
(RT0) and hence they may also be received separately in the axial direction. In this
case both the edge waves and the Rayleigh waves are somewhat degenerated since
they are continuously connected with the origin of the Rayleigh waves, radiating
continuously their energy into the transverse waves. They can however be received
at any angle to the axis by a receiver sensitive to transverse waves of the SV type.

The degenerated, continuously fading, Rayleigh wave is sometimes called a
“creeping wave”. It should be called preferably a “Rayleigh creeping wave” differing
as it does from the longitudinal creeping wave described in Section 2.5. Its velocity
is somewhat less than that of the normal Rayleigh wave and it depends on the ratio
of the cylinder radius to the wavelength.

The amplitudes of all these different types of wave cannot be evaluated from
Fig.2.25. The wave fronts shown give only the positions at the moment considered
and they must not be confused with their angular characteristics. Additionally they
are not given entirely but only schematically in the main direction of propagation.
Numerical calculations for edge waves from artificial defects in selected cases have
given pronounced lobes [618].

In the foregoing examples we have exclusively used the longitudinal and the
transverse wave of the SV type, i.e. polarised parallel to the drawing plane. We can
describe the other transverse wave, the SH wave, very easily since no mode change
takes place. The direction of oscillation remains parallel to the surface of the reflec-
tor and the compensation waves are diffracted waves of the same type leaving the
edge in the form of a circle around the edge.

Artificial defects in the form of surface cracks are important in the practical
case and they can be treated qualitatively in the same way. However, the additional
plane provided by the surface of the solid body produces numerous additional Ray-
leigh waves and those arising from their mode changing and splitting off (Harumi
et al. [9)]).



2.8 Reflection at a Right-angled Edge 43

For the theory of circulating boundary waves on the surface of empty boreholes,
as well as those filled with liquids, see [167].

2.8 Reflection at a Right-angled Edge and in a Corner

For the testing of materials, reflections within the angle formed by two surface
planes of a test object are frequently encountered (Fig. 2.26). If a ray strikes such a
right-angled edge perpendicularly it is reflected parallel to itself at whatever angle
it makes with either of the two faces following a double reflection. In the case of a
beam (Fig.2.26b) there is in addition an interchange of its two sides. If its axis does
not strike the edge it is additionally transposed parallel to itself.

If a third plane face perpendicular to the other two forms with them a corner
then it reflects a beam, coming from any angle in space, parallel to itself. This ef-
fect is exploited optically in the “cat’s eye” reflector. A similar effect applies to a
plane ultrasonic wave but allowance must be made for the results of the reflection
taking place at a solid/gas interface. At each of the two reflections a wave of the
other type can be split off so that the total coefficient of reflection largely depends
on the angle of incidence. Figure2.27 shows the angular reflection for a longitudi-
nal wave (a) and a transverse wave (b) in steel. It is calculated as the product of the

Fig.2.26. Reflection within a rectan-
gular edge. a single ray; b beam
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Fig.2.27. Coefficient of angular reflection in steel for incident longitudinal wave (a) and
transverse wave (b)
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coefficients of reflection from Figs. 2.7 and 2.8 for the angles &; and 90° — &y and «;
and 90° — «, respectively.

Except for a glancing angle incidence to one of the faces, the longitudinal wave
shows very bad angular reflection. The reason is that at one of the two reflections a
strong transverse wave is always split off which does not return in the direction of
the incident wave.

Because it is twice totally reflected the transverse wave is reflected completely
in the central range. On either side, however, there are troughs in which practially
no reflection occurs. At glancing angles the transverse wave is theoretically again
reflected more strongly. Here, however, the supplementary limitation must be made
concerning both kinds of waves, that at glancing angles an actual sound beam, in
contrast to a theoretial plane wave, loses its sensitivity. Cancellation by interference
between the direct and the reflected beam occurs along the wall so that both
curves in Fig.2.27a and b again drop practically to zero at 0° and 90°.

Figure 2.27b also shows the angles frequently used in the testing of materials. It
can be seen that for an angle reflection as used for instance for the detection of an
incipient crack starting at right angles to the surface, the angles 35° and 45° are fa-
vourable. The 60° angle is particularly unfavourable because it lies within a reflec-
tion trough.

At a corner it is possible to calculate certain surfaces at which longitudinal
waves are only minimally reflected for the greater portion of the steric angle range.
For transverse waves a total reflection range is obtained near to the steric angle bi-
sector of the corner but is surrounded by a deep trough. However, this surface is
not rotationally symmetrical about the steric angle axis because of the polarisation
influence. If it is polarised parallel to one of the planes then there will be no extinc-
tion but instead a reinforcement of the grazing wave.

As well as the specular reflection shown at the edge, a mode change into a Ray-
leigh wave will also take place. It will be of some importance only if there is a fur-
ther reflecting edge parallel to the first one, where again reflection and mode
change can take place, as for example in the case of a rectangular groove. From the
bottom of the groove the diffracted edge wave generated by mode changing of
the Rayleigh wave may interfere with the main reflection, especially if the groove
has only a depth of a few wavelengths. In this case Fig.2.27 is no longer valid.

A free wave reflected at a boundary with an acoustically soft medium (e.g. air)
undergoes a phase reversal. At the edge in Fig.2.26 therefore two phase shifts will
take place regardless of whether a mode change has happened or not. Therefore an
echo of a free surface which undergoes only one phase shift will differ from an edge
echo in phase.

For reflection from edges and grooves see also [1186, 1187, 1606, 1607, 50, 229,
544, 394], for picture displays see [597], for computer simulations see Sato [1321]
and Harumi {617, 9, 618, 619, S65].

y Fig.2.28. Reflection within a pointed edge
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Angles other than 90° are less interesting, but if the angle of incidence of a lon-
gitudinal wave (Fig.2.28) in steel and the angle of a pointed edge are such that
sine = ¢/¢, siny

the splitted-off transverse wave meets the second plane perpendicularly and is to-
tally reflected. If o equals about 61°, the mode change back into the longitudinal
wave is nearly 100 %; see Section 16.4, 61° reflection.



3 Geometrical Acoustics

3.1 Limits of Validity

Geometrical optics use light rays which can be drawn as straight lines. Applying the
simple laws of refraction and reflection at interfaces, it permits a very clear presen-
tation of the effect of mirrors and lenses with curved surfaces for example. We have
also used this convenient method when discussing reflection and refraction in
Chapter 2. In this connection it should, however, not be overlooked that this
method fails to take into account a very important property, both of light waves and
ultrasonic waves, viz. the wave structure.

As in optics this produces a number of deviations from purely geometrical con-
structions, diffraction phenomena occurring at gaps and openings and whenever the
dimensions of acoustic sources, reflectors or test pieces are not much greater than
the wavelength.

The lengths of light waves are of the order of less than a thousandth of a mil-
limetre but those of ultrasonic waves are of the order of millimetres and therefore,
for all dimensions below about 100 mm, i.e. in the range most commonly used in
practice, diffraction phenomena can be expected to occur. The simple geometric
construction of an ultrasonic field behind a hole in a diaphragm as shown in
Fig. 3.1 will therefore in reality be inadmissible for hole dimensions below 100 mm.

In the following sections a few feasible applications of geometric ultrasonic op-
tics will be discussed remembering, however, that where this concerns cases in
which the wave length is no longer very small compared with the dimensions con-
cerned, the results obtained are only more or less rough approximations.

D/aphragm

Eﬂﬂ I

Fig.3.1. Geometrical construction of the
passage of a plane wave through a hole in a
diaphragm; on the right the correlated dis-
tribution of the sound pressure as a func-
tion of the cross-section, valid approxi-
mately only as long as the wavelength is
very small compared with the diameter of
the hole
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3.2 The Sound-Pressure Distance Law for Spherical
and Cylindrical Waves

Let us investigate how in the case of simple wave forms the sound pressure changes
with the distance from the source. In a plane wave the pressure of course remains
constant in each plane of the wave, but for waves which are not plane, energy con-
siderations lead to a distance law. Figure 3.2 shows four rays coming from the ori-
gin of a spherical wave, which determine a small square on the surface of a sphere
with the radius a. On a further sphere with the radius 2a the four rays determine
a square which is evidently four times greater in area. According to the law of con-
servation of energy, the ultrasonic energy passing through both squares per unit
time must be identical. The energy density per unit surface on the sphere with the
double radius is thus only one quarter. Generally the intensities at two different
distances are, in the case of spherical waves, inversely proportional to the square of
the distances from the source.

Since according to Eq.(1.4) the sound pressure is proportional to the square
root of the intensity, the acoustic pressures are inversely proportional to the dis-
tances:

D _ 4
Dy a

If a; = 1 and the sound pressure at this point is p;, the law of distance for the sound
pressure of the spherical wave gives us:

1
=D 7 3.1

According to this relationship the sound pressure in the source itself (i.e. at zero
distance) would become infinite, which is just as unreal as the concept of a point
source. Real sources always have finite dimensions and in close proximity to them
the acoustic wave is usually not strictly spherical. The law (3.1) therefore applies
only to distances very large compared with the dimensions of the source. If this

Poaint source of
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Fig. 3.2. The law of distance for intensity
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condition is not fulfilled at unit distance, p, refers to a quantity purely specified for
determining the strength of the source.

In the case of a cylindrical wave the source is not a point, but the linear axis of
the cylindrical wave. According to Fig.3.3 the area determined by four rays on a
cylindrical surface therefore changes only as a linear function of the distance. A
square on the inner cylindrical face becomes a rectangle of twice the area on the
cylindrical surface with double the radius. The intensity therefore changes only in-
versely with the distance, that is at a slower rate than in the case of a spherical
wave. Consequently, the acoustic pressure decreases only inversely with the square
root of the distance:

P=piy, - (3.2)
In the testing of materials the spherical wave, particularly where large test objects
are concerned, is the most important waveform because the wave generated by a
conventional ultrasonic oscillator can be regarded at greater distances as a spheri-
cal wave. In practical testing this spherical wave frequently strikes flat, cylindrical,
and more rarely spherical surfaces, by which it is subjected to changes by reflection
and refraction. These effects will be discussed in the following Sections.

3.3 Reflection and Refraction of Spherical Waves
on Plane Surfaces

The reflection of a spherical wave incident on a plane surface is shown geometri-
cally in Fig. 3.4 where each ray is reflected at its own angle of incidence. The shape
of the spherical wave is preserved but the reflected spherical wave seems to come
from a point 0’ which is the mirror image of the real origin 0. A beam retains its
angle of aperature d, as can be seen from the two rays drawn in the diagram and
which form the angle d.

If one observes the sound pressure along a given ray, it is found that before be-
ing reflected it follows the law (3.1). After reflection, the coefficient of reflection for
the angle of incidence and the type of interface concerned has to be taken into ac-
count, as described in Chapter 2:

Fig. 3.4. Reflection of a spherical wave at a
plane interface (wave fronts only shown par-
tially)
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Fig. 3.5. Refraction of a spherical wave at a water/steel interface

Since according to Fig.2.6 and the following diagrams, this coefficient R de-
pends strongly on the angle, the distribution of the sound pressure on one of the
spherical wave fronts may be greatly changed by reflection. The spherical character
of the wave is nevertheless preserved.

In the case of reflection of the spherical wave with a mode change, or refrac-
tion of the spherical wave, the wave no longer remains spherical, in contrast to the
simple reflection. As an example, Fig. 3.5 shows the refraction at a water/steel inter-
face, in which only the longitudinal wave in steel is considered. Only rays which are
almost perpendicular still intersect each other after refraction at a virtual origin 0.
The refracted wave can therefore be regarded as a spherical wave only in this parti-
cular zone. Geometry gives us:

d22d1=6]:62=C1:C2 (here1:4).

The angles of divergence of narrow beams incident at a right angle are in the ratio
of the velocities of sound, which for longitudinal waves in steel is four times greater
than in water. The pattern of the sound pressure in the second material is deter-
mined by the virtual origin 0’ from which the distance a in Eq. (3.1) must be calcu-
lated. In the case of obliquely incident beams with both refraction and reflection
with mode conversion, the angle of divergence is dependent on the angle of inci-
dence, as is also the pattern of the sound pressure.

3.4 Curved Interfaces Acting as Concave Mirrors and Lenses

In Fig. 3.6 we consider the behaviour of a spherical wave impinging onto a spherical
concave mirror with a radiusr. The origin of the wave is at a distance a from the
centre of the mirror. After reflection the rays intersect at an image point at a dis-
tance b from the mirror. As in optics we call the focal distance f, which is the dis-
tance of the image point in the case of plane incident waves. These quantities are
related in the formula

1 2
==l
*— e (3.4)

1
f

|
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Fig. 3.6. Spherical wave Fig. 3.7. Cylindrical-mirror
incident onto a concave effect from a forging borehole

mirror

The plus sign applies to the concave mirror and the minus sign to the convex mir-
ror. The focal distance should always be taken as positive.

If, in the case of a concave mirror, a negative image distance is obtained, this means a vir-
tual image point behind the mirror. Conversely, if the direction of the rays is taken to be re-
versed (incident, convergent spherical wave) with apparent origin behind the concave mirror,
the distance a should be given the negative sign.

In the case of the convex dispersing mirror all quantities should be taken with the positive

sign. Either the image point or the centre of the spherical wave will always appear to be be-
hind the mirror.

In order to calculate the acoustic pressure of the reflected wave, Egs. (3.1) and
(3.2) are used in which the distance from the corresponding image point must now
be taken. This image point, or image line in the case of a cylindrical wave, is the
source from which the further propagation process can be recalculated, independ-
ently of the generation of the image point.

Consider a spherical wave striking a spherical mirror or a cylindrical mirror.
The sound pressures of the reflected waves as a function of the distance x from the
vertex are:

Spherical wave on spherical mirror on cylindrical mirror
n_ f ) f (3.5)
a xFf(1+x/a) a VQA+x/a)IxFfA+x/a)]

The upper sign applies to concave mirrors, and the lower sign to convex mirrors. p;
is the sound pressure of the incident spherical wave at unit distance from the cen-
tre, so that p,/a is its sound pressure at the vertex of the mirror. In the case of a
spherical wave on a cylindrical mirror, which is the more important one in practice,
neither a purely spherical wave nor a cylindrical wave is produced but a combina-
tion of two different cylindrical waves which, in accordance with the two terms be-
low the root sign, have also two different image points.

For quantities under the root signs only absolute values will be calculated. In
the case of the concentrating mirror the nominator can disappear in all terms, viz.
at the real image points, where theoretically the acoustic pressure would become in-
finite. In reality the geometric construction fails here because of diffraction pheno-
mena. The true concentration and increase of the sound pressure depends on the
wavelength.
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Figure 3.7 shows a practical test in which a sound beam of spherical waves from
the probe meets a cylindrical hole in a forging. The full calculation will be made in
Section 3.5.

In this case the surface is air backed and the rays incident at right angles are to-
tally reflected, as is also assumed in Eq.(3.5). According to Fig.2.7 the rays not
strictly normally incident, are not totally reflected but the deviations are only very
slight, and for longitudinal waves at 16° are only about 10 %. Since Eq. (3.4) is being
used, the calculation should in any case be limited to only a narrow beam around
the normally incident ray.

If the reflecting surface is not air-backed but for example by water, the reflec-
tion will be reduced. Formula (3.5) must then be supplemented by the coefficient
of reflection R according to Eq.(2.1). Naturally this does not change the shape of
the reflected wave, nor the position of the image point.

At such curved boundaries the transmitted waves can also be traced by consid-
ering single rays following the law of refraction (Chapter 2).

A solid/liquid boundary curved spherically or elliptically (Fig. 3.8) acts as a con-
centrating or dispersing lens, depending on the orientation of the curvature and the
ratio of the sound velocities ¢,/c;.

In contrast to optics, in which calculations are made with the “refractive index”
n = ¢;/c, > 1, with ultrasonics very different values may occur. For the refraction of
longitudinal waves at the water/steel boundary we have c¢;/c, = 0.25 and at the
steel/water boundary we have ¢,/c; =4.

Figure 3.8 shows the four possibilities of a lens between water and steel (cf. the
following table).

Curvature &/

Condensing lens a concave >1

Condensing lens b convex <1

Dispersing lens c concave >1

Dispersing lens d convex <1
Water  Steel Steel  Water

Cr<Cp €1>C,

Y
i

b
Water Steel Steel  Water
Cc1<6 > G

7}
%

N
N
N

[«]
[T

Fig.3.8a-d. Lens effect of a curved interface (water/steel)
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4
Water  Steel Steel Water
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Fig. 3.9. Spherical waves in cases a and b of Fig.3.8

The formula for the focal distance:

=T
1—C2/C1

S (3.6)
is only valid for narrow beams small in comparison with the lens diameter. It can-
not be used to find the focal distance in the case of focussed transducers supplied
commercially (Section 4.5).

If in Fig.3.8 the incident wave is a spherical one rather than a parallel beam,
then in cases a and b we get real image points but in cases ¢ and d only virtual ones
(Fig.3.9).

The focal distance shall always be regarded as being positive, as well as the axial
distances a and b of the origin of the spherical waves and their image points from
the convex surface. The lens formula

1 ¢/ 1

3 " a —f- 3.7
links all three quantities. Anything said above concerning lenses, including
Figs.3.8 and 3.9, also applies to cylindrical lenses. If a plane or a spherical wave is
to pass through a spherical or a cylindrical lens, the resultant acoustic pressures are

plane wave
through spherical lens through cylindrical lens

Dp, X éf, Dp, ‘\,xiif R 3.8)

spherical wave

Di’L f J 4 f

_ xc\’ a xc, _ xc \\
1+ X& X
x+f< ac1> (1+ ac,) (x+f(1+ ac1>>

The upper, negative sign applies to condensing lenses, (case a and b in Fig. 3.8) and
the lower, positive sign to dispersing lenses. Under the root sign only absolute va-
lues shall apply and D is the transmission coefficient according to Eq. (2.1).

3.9

For the sake of clarity excessively wide beams are used in the ilustrations for which in
reality the fringe rays would no longer intersect each other at the focal point.
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When testing materials, the mirror and lens effects are often produced naturally
by the surfaces of the test objects. Sometimes the effects are used intentionally in
order to change the direction, shape or intensity of a wave. The plane mirrors used
for this purpose consist of a metal or plastic membrane stretched over a flat surface
leaving between them a thin layer of air. The layer of air can of course be very thin
without becoming transmissive but as a precaution a dry sheet of paper can be in-
serted. The membrane itself should be thin compared with the wavelength. Convex
mirrors are best made of solid materials, for example steel or lead, with losses of
10% to 20 %. An absorbing material such as lead can be used to prevent the return
of transmitted waves from other interfaces. A parabolic mirror is superior to a
spherical mirror since in this case the fringe rays also converge at the focal point.

Occasionally, when testing a complex specimen, reflection by means of mirrors
can be exploited to reach points difficult of access (Fig. 3.10). Other examples are
shown in Figs.22.6b and 16.18, and in the latter case the workpiece has intention-
ally been given a special form to be able to carry out the test by means of the mirror
effect.

To obtain high efficiency in the case of ultrasonic lenses, it is important to keep
the reflection losses small.

According to Eq. (2.1) this means that the acoustic impedances of lens and con-
tiguous material should be as nearly equal as possible. On the other hand Eq. (3.7)
indicates that in order to produce satisfactory refraction, the acoustic velocities
should differ as much as possible. The first requirement rules out lenses made of
metal immersed in liquid, whereas those made of plastics, for example Perspex or
polystyrene, are superior, at least for lower frequencies at which their absorption is
not excessive. Liquid lenses consisting of containers made of thin, spun metal
sheets, have also been successfully used. For details see [2].

To vary the focal distance lenses filled with liquid between deformable dia-
phragms have been used, working in a similar way to the lens in the human eye.

In testing materials lenses are also used to focus ultrasonic beams and thus
achieve higher sensitivity and better resolution. Finally, another idea has been
taken from optics and applied successfully to ultrasonic testing. This is the princi-
ple of Fresnel or zone lenses (Fig.3.11). They have the advantage of being thinner
but they can only be used for one special frequency, the zone widths and thick-
nesses being calculated for a certain wavelength only. Furthermore they can only

Fig. 3.10. Exploitation of the mirror effect for measuring the cylinder wall thickness of an en-
gine block under water

Fig. 3.11. Fresnel or zone lens made of plastics material in water
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operate successfully with ultrasonic pulses of sufficient length to allow constructive
and destructive interference between different waves. For lenses see also [1278,
1498, 732] and about materials for lenses see [S87].

3.5 Spherical Waves in Hollow and Solid Cylinders

The application of the results of the last section will now be illustrated by the prac-
tical cases in which a sound wave passes through a hollow or solid cylinder, either
through direct contact with the entrance point of a spherical wave on the surface,
or while immersed in a liquid at a distance from the origin of the spherical wave.

For a cylinder with a coaxial borehole as shown in Fig. 3.7, for example a gen-
erator rotor with a central hole, the result of the calculation of the sound pressure
according to Eq. (3.5) is plotted in Fig. 3.12 for different ratios of internal and exter-
nal radii. On the axis the theoretical acoustic pressure of the incident spherical
wave has been given the value 1. After reflection this value decreases rapidly and
remains appreciably smaller than in the case of a reflection from a flat back wall at
the same distance.

Of particular interest is the magnitude of the reflection from the centre hole,
measured at the entrance point of the beam, as compared with the reflection from a
flat back wall. This law is shown in Fig. 3.13.

However, this result applies only if the diameter of the reflecting hole exceeds
that of the beam. For instance, a hole of 50-mm radius at a distance of 250 mm
gives only 40 % of the reflection from a flat back wall (r;/a = 0.2). The function is
derived from Eq. (3.5) for the cylindrical mirror acting as a convex mirror (therefore
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Fig. 3.12. Relative sound pressure p of
an incident spherical wave after reflec-
tion from a cylindrical hole (sound
pressure of spherical wave at distance
d/r, = 1 arbitrarily set equal to one)
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Fig.3.13. Ratio of reflected sound pressures at cylindrical hole and flat back wall, measured
for incident spherical wave at entrance point of beam

lower sign), with x = q and if divided by the sound pressure p,/2a which the flat

back wall would produce:
Deyi _ Ti
o 1/ P (3.10)

In the case of reflection in a solid cylinder, the beam-entrance point is usually lo-
cated directly on the surface of the cylinder as shown in Fig. 3.14. In this case the
back wall concentrates the wave along a focal line F between axis and back wall, at
1/3 radius from the axis. The corresponding law is again derived from Eq. (3.5) for
the concave mirror with a = 2r = 4f. The presentation in Fig.3.15 uses the distance
d instead of x, measured from the beam entrance point.

In this case too the simple formula fails to give true value of the sound pressure
along the focal line. Nevertheless in practice considerably higher acoustic pressures
are produced than those of the incident wave at that point. For practical echo
sounding this focussing method may result in a small flaw producing a much
stronger echo over the longer path via the back wall (W reflection. Fig.3.16), than
along the direct path to and from the beam entrance point.

Fig. 3.14. Reflection of a spherical wave in a solid
cylinder
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Fig. 3.17. Relative sound pressure in solid steel cylinder for an incident spherical wave from

distance a in water
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The sound pressure of the reflected wave is also greater along its entire path
through the cylinder than in the case of a flat back wall, which is plotted for compar-
ison in Fig. 3.15. They become equal only in the immediate region of the beam en-
trance point. That is why when comparing a solid cylinder and an equally thick flat
plate the back-wall echoes are equally strong for equally strong entering waves,
which also applies to the multiple echoes as confirmed by a simple calculation.

The influence of the probe diameter and the radius of a solid cylinder on the
back wall echo is the subject of the paper [780].

With reference to the multiple echoes from a cylinder with a central borehole
see [781, 979, 782]. The latter proves that the correction factors for the influence of
the cylinder radius, as given in Japanese testing standards, are in error.

Often cylindrical test objects are immersed in a liquid, the sound generator be-
ing at a distance a from the test object. Figure 3.17 shows that the sound pressure
in a steel cylinder immersed in water decreases rapidly with the distance from the
surface. With the probe at a distance of 1 radius, viz. a = r, the side remote from the
probe receives less than 1/10th of the initial sound pressure. At a greater distance
(a = 2r) the initial value decreases but the pattern becomes generally more un-
iform.

It must be mentioned again that this relationship, as with the earlier ones, gives
approximately correct values only in the case of specimens large compared with the
probe diameter.



4 Wave Physics of the Sound Field

4.1 Elementary Description

Ultrasonic waves are generated by a source, the so-called probe, and we require to
know how the wave motion propagates into a material as the ultrasonic field.

For this we could make use of the variation of the density of the material to de-
scribe the field, or the velocity of the particles, or their displacement. However, for
material testing the sound pressure is of greater interest or more precisely the am-
plitude of the alternating pressure. This defines the amplitude of the signals we re-
ceive just as with human hearing the effect is louder for larger variations of the air
pressure.

In some simple cases we can calculate the sound pressure at a particular spot or
we can measure it with a miniature microphone or in certain materials we can
make it visible.

The sound field of a circular, disc-shaped piezo-electric oscillator is quite a sim-
ple one (Section 7.2). It oscillates with equal phase and amplitude over its whole
surface and communicates its own movement to the contiguous material whether
as a thickness oscillator (longitudinal movement) or as a shear oscillator (transverse
movement). It acts as an ideal piston oscillator for longitudinal oscillation if we
place it into a hole in a solid wall as in Fig.4.1. We can also assume that a diaph-
ragm of the same diameter in a non-permeable wall irradiated by a wide plane wave
must also give rise to the same sound field as the actual oscillator and thus the
movement of the particles within the diaphragm, or on the surface of the oscillator,
will be the same.
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Fig. 4.1. Oscillator in rigid wall produces same effect as a diaphragm
in a flat wave with rigid screen

Fig. 4.2. Interference structure of sound field behind diaphragm
according to Huygens’ principle
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According to simple geometric principles the plane wave would beam through
the diaphragm a sharply defined cylinder surrounded by a shadow field. In reality
the sound field, owing to diffraction phenomena, is changed considerably in both
regions. This can be illustrated qualitatively by applying Huygens’ principle men-
tioned in Section 1.2. As in Fig. 1.8, the spherical elementary waves again form
plane wave surfaces in the centre zone of the diaphragm. To this is added the edge
effect. In the case of a straight edge the elementary waves of the edge form a cylin-
drical wave whose axis is the edge, while in the case of a circle an annular wave is
produced. Superposition upon the plane wave produces a field of maxima and min-
ima of the sound pressure, of which some are indicated in Fig. 4.2. This is clearly
demonstrated in Fig. 4.3 where the actual sound beam in front of an oscillator has
been made visible (Osterhammel method [1155]).

The ratio of oscillator diameter D to wavelength 4 determines the spread of the
interference field and the number of maxima and minima.

In Fig. 4.2 the wavefronts have a separation of one wavelength 4 and the diame-
ter of the oscillator has been chosen to be 6 wavelengths. In Fig. 4.3 D/4 was about
6.7. The circled points on the dotted lines mark the spots where the path difference
between the plane wave and the edge wave reaches an exact multiple of 4 and here
we have maxima of the sound pressure.

Both illustrations are like instantaneous exposures of the sound field but in a
cine film we could see the maxima travelling along the dotted curves towards the
axis.

The position of the last pressure maximum on the axis of the disc and the beam
depends on D and 4 in accordance with the relationship

Dz_lz
4

z= 4.1
In most practical cases the diameter is much larger than the wavelength and we can
simplify Eq. (4.1) as

z~D?/4A=N.

The field beyond the last maximum is called the far-field; the one between the
probe and the last maximum is the nearfield. N therefore is called the near-field
length, and is an important characteristic of the sound field.

Figure 4.4 shows schematically some sections of the sound field perpendicular
to its axis. Immediately in front of the oscillator we have an annular system of pres-

Fig.4.3. Sound field in front of an oscil-
lator with D/A = 6.7 (photograph by Lin-
hardt and Rieckmann [928])
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Fig.4.4. Near-field in front of an ideal pis-
ton oscillator, or behind a circular diaph-
ragm in a plane wave, with distributions of
the sound pressure along sections spaced
a=0, N/2 and N, for D/A = 16, with corre-
lated photographed simulated images of
the beam cross-section

Fig.4.5. Transition from near-field
to far-field with sound-pressure dis-
tributions in cross-section as shown
in Fig. 4.4 but reduced 1:4

sure minima and maxima the average of which equals the pressure of the plane
wave and the number of maxima is D/A. In the example illustrated there are 16,
which corresponds to an oscillator of 24 mm diameter with a wavelength of 1.5 mm,
corresponding to a frequency of 4 MHz in steel.

At a distance of about N/2 we find the last pressure minimum on the axis sur-
rounded by an annular maximum and there is a single maximum on the axis at the
near-field length N (see also Fig.4.19 below).

The near-field has quite a complicated structure, whereas that of the far-field is
much simpler (Fig. 4.5). Here the maximum for all sections lies on the axis and the
adjacent minima lie to the side at positions defined by the angle y, (dotted lines in
Fig.4.5). y, is called the angle of divergence.

Since it is difficult to obtain distinct pictures of such acoustic beam cross-sections, the

images were produced artificially by photography on the basis of the calculated cross-section
curves. Intense brightness corresponds to high sound pressure.

The reason for the variations in the sound fields is of course the interference be-
tween different oscillations within the wave trains when shifted in time. The wave
therefore must be sufficiently long since otherwise the variations of the sound pres-
sure are reduced and may even disappear completely when short pulses are used.
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4.2 Zone Construction of a Sound Field according to Fresnel

In the foregoing chapter we have again made use of the principle of Huygens to ex-
plain the sound field and we will now use it to construct an arbitrary sound field
graphically without mathematics. The method based on Huygens’ principle and de-
veloped by Fresnel is called zone construction.

Differences of the sound pressure at different points of the sound field result
from the fact that Huygens’ elementary waves have not travelled along the same
paths from all points of the radiating surface. In addition their sound pressure de-
creases inversely with the distance. The individual sound pressure values of the ele-
mentary waves cannot therefore simply be added but their path differences must be
taken into account too. Two equally strong waves with a path difference of exactly
one half wavelength cancel each other completely and path differences between
zero and 1/2 wave length thus result in acoustic pressures between double the value
and zero. This can be presented very conveniently by vector addition as shown for a
few cases in Fig.4.6. This no longer determines the path difference of two elemen-
tary waves by a linear measurement but by an angular measurement in which one
full wavelenth corresponds to an angle @ of 360° or 21. Generally, the path differ-
ence [ corresponds to the phase angle

l

@=2n 7 4.3)
In Fig.4.6 the sinusoidal patterns of the sound pressures of two elementary waves
superimposed at a point, are added for given instants and for different path differ-
ences (phase angles). In each case the corresponding vectors are added at the right
hand side, the result being identical but much simpler and clearer. At arbitrary
sound pressures and phase angles therefore the correlated vectors form a parallelo-
gram, the diagonal indicating the sound pressure of the resultant wave in both mag-

nitude and phase.
In the Fresnel méthod of presentation, all elementary waves radiated from a
given surface and producing at a given point of the sound field a resultant sound
pressure by adding their individual vectors, are first sorted into groups. Such a

O
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(Zero)
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0 mfz & 3nfe 2x 0 xP x Inf 2n 0 e x 32 2n
a @-0° b @-xfz-90° c g=m-180° d

Fig.4.6. Vector addition. a, b and ¢ with identical amplitude and different phase, d with dif-
ferent amplitudes. a @ = 0; b @ = /2 = 90°; ¢ @ = n = 180°; d intermediate value
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Y ey 7.«
L2

Fig.4.7. Elementary waves radiated from the face of a circular ring
Fig. 4.8. Fresnel zones of equal area (the radii are in the ratio of the square roots of integers)

group should have approximately the same phase angle, i.e. the same path length
from the area concerned to the point of summation. For a flat radiating surface this
is true for instance for all waves radiated from an annular zone whose centre lies at
the foot of the vertical (Fig.4.7). If the radiator oscillates uniformly inside such a
zone, all its waves can be added up to a single sound pressure which is proportional
to the area of the zone, and inversely proportional to its distance from the point of
observation (since they are spherical waves). In the case of a flat area the appropri-
ate zones are concentric, circular rings.

If we divide the surface of the radiator into n annular zones, the j** zone having
the area S; and the path of the waves to the measuring point being ag;, we obtain the
sound pressure of this zone as
S

q;

pi=GC; (J=1,...,n). 4.4

C, is a factor of proportionality, which is constant for all zones if the radiator oscil-
lates uniformly over the whole surface. The area of one zone equals

Si=n(rl—-ri) (G=2...n).

It is advantageous to equalise the areas of all zones by choosing

rj=rﬂ/}: (j=2...n)

r, being the inner radius of the j ™ zone (Fig. 4.8 and 4.9). In this case we have
all areas

S,=8,=nr? (j=2...n).

To add up all vectors we need only the path length

ajz""jz_l"*-az (j=2...n) (4'5)

where a;, = a. The angle of the phase @; between the path g;, and the axis, is ob-
tained from Eq.4.5
2n .
¢pj=Taj (j=2...n) 4.6)

with ¢, = 0.
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Fig.4.9. Construction of zones, path g; = yr?_, + a®
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Fig. 4.10. Construction of zones according to Fresnel for two points on the axis at distances
a;=R?/A=96 mm and a, = R*/A =48 mm; for R =12 mm, 4 =1.5mm (D/4 = 16)

Figure 4.10 shows the graphical construction of the sound pressure at two points
on the axis of a circular disc. It has a value D/A =16, as was also chosen for
Figs. 4.4 and 4.19. The two observation points on the axis with distances a, and a,
equal the near-field length N and its half value, i.e.:

2
won=B goa N
The surface of the radiator has been divided into 12 zones with vectors 1 to 12.
Their lengths are derived from Eq. 4.4 and Eq. 4.5 and their angles from Eq.4.6. We
realize that the lengths of the wave paths vary only very little if the observation
point is at a large distance from the radiator. In addition the differences from one
angle to the next get very small.
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Here we have at the distance a = N, Ap = 15° and at a = N/2, Ap = 30°. In the
first case the chain of vectors winds up to almost a semi-circle resulting in a total
sound pressure at its maximum (and equal to the circle’s diameter). In the second
case it winds up to complete a full circle and the resultant sound pressure totals
Zero.

The winding up of the chain of vectors increases as the distance gets shorter and
we get more and more maxima and minima of the sound pressure (compare with
Fig. 4.19). On the other hand, for large distances, the chain becomes a straight line.
That means we can add up the individual vectors without regard to the phase angles
and the relationship then becomes:

p=C(n/a) S;=C(S/a)

since all distances a and all the zone areas are equal. Therefore we derive the law,
that at large distances from a plane radiator the sound pressure on its axis is propor-
tional to its area and inversely proportional to its distance (as shown already in Sec-
tion 3.2). Even a large radiator for large distances acts as a point source and its par-
ticular shape, whether a circular disc or not, has no influence.

It is interesting to study the influence of different zones on the resulting sound
pressure on the axis. At the nearfield end, a = N, the outer zones do not contribute
much to the pressure. Omission of one or two vectors in Fig. 4.10 diminishes the
amplitude very little and the main influence is a phase variation which is usually of
no consequence for materials testing. A similar result produces a reduction of the
oscillation amplitude in these zones instead of complete suppression but at the dis-
tance N/2 the effect is quite different. Complete suppression, or even some damp-
ing of the oscillation of the outer zones, immediately raises the sound pressure
from zero to much higher values. All zero points in Fig.4.19 behave in this manner
and this effect is used to equalize the sound field on the axis in probe construction
(Section 4.8).

Such experiments, which can be carried out easily in water, show clearly that
because of the wave basis of the sound field one can obtain “more” by “less”, which
would be impossible to explain by a geometric-acoustic treatment of the sound
field.

For points not on the axis, all circular ring zones are no longer located entirely
on the surface of the radiator (Fig.4.11). The areas S are no longer identical and
the lengths of the p; vectors become different. But even in this case the construction
by the graphical method is simple. The areas are determined by counting the

¢

S — Fig.4.11. Fresnel zones for a point not on the axis
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Vg
dl=aj-a;_;=b-siny

Fig. 4.12. Path difference between two elementary waves for the case
of a distant point of observation

Fig. 4.13. Zonal strip with path differences of A/2 at D/A =16 and
with y = 20°

squares in a drawing of the system on millimetre graph paper and the method is
then not limited to circular radiator surfaces.

If the point of observation off the axis moves to infinity, the phase difference for
two points of the radiator surface depends only on the angle y at which this point
appears relative to the axis (Fig.4.12). The ring system from a distant viewpoint
then appears as a system of parallel strips which, for a given path difference Al have
the distance b = Al/sin p. If a path difference of half a wavelength is chosen, two ad-
jacent strips will cancel each other at the point of observation if their areas are
equal. Such a system is shown in Fig.4.13 for the conditions: D/ =16, angle
p=20°.

It can be seen that the black strips are in practice almost completely counterbal-
anced by the white strips, so that nothing, or almost nothing, is left in this direc-
tion. This explains the directivity of the radiator in the far-field. At small angles the
strips become wider and the total area of the white strips may then greatly exceed
that of the black strips, the condition corresponding to the main maximum of the
radiation.

As shown above the sound field may be changed by varying the transit-time dif-
ferences between individual zones. This can be done by using a curved oscillator
for which the fringe zones have the same sound path to a certain observation point
as have the central ones and we obtain thereby a focussed source. With a Fresnel
lens (Fig. 3.11 and [1498, 1499]) the transit-time differences arise from different ve-
locities in the lens material compared with air and by the varying thickness of dif-
ferent sections of the lens. With a zone lens (Fig. 4.36d, see also [1279]) certain an-
nular zones suppress the wave. Finally it is possible to divide the whole oscillator
into distinct and separated domains, which are excited electrically by voltages with
appropriate phase shifts to produce specially selected beam characteristics (see Sec-
tion 10.4.1, phased arrays).

With the exception of the first solution, viz. using a curved oscillator, the other
methods are only effective if the wave train is sufficiently long to produce the ne-
cessary phase shifts with equal amplitudes.
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If the wave is produced by some arbitrary shape of the oscillation the resulting

sound field must be constructed by adding up the individual sound fields of the in-

dividual component frequencies of the oscillation also taking into account their dif-

ferent phases.

Compared with the sound field of a long wave train, a short pulse of the same
basic frequency shows substantial distortions away from the axis and its original

shape can only be recognized when viewed in the axial direction.
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Fig.4.14. Radiation of a longitudinal wave from an oscillator with a diameter of only a few

wavelengths. a Net presentation; b vector presentation
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4.3* Graphical Presentation of Sound Fields

To illustrate sound fields pictorially there are several avilable possibilities. In
Figs. 1.2, 1.3 and 1.4 plane waves were represented by a network of individual mass
points which are displaced by the force of an ultrasonic wave. In the same way it is
possible to represent a complete sound field rather than just an unlimited plane
wave. Figure 4.14 illustrates two alternative methods based on a computer simula-
tion which calculates the field in front of a longitudinal wave oscillator.

The deformation of a network (Fig.4.14a) is a simple illustration representing an
instantaneous “snapshot” of the sound field and it can also be displayed by vectors
(Fig.4.14b) giving both amplitude and direction of individual sound-field ele-
ments.

In Fig.4.14a we can easily recognize the surface wave, which is radiated simul-
taneously with the longitudinal wave (cf. Harumi {9, S 65], and for this finite element
method see also [1195, 163, 733, S 100)).

For the angular characteristics of a sound field a useful method is to measure
the amplitude of the wave on the points of a semi-circle around the source and plot
them as vectors from a centre point on the radiator (Figs.4.14 and 4.29). This re-
presentation may also be made in perspective (Fig. 4.27). This method gives a good
picture of the far-field of a radiator. If we utilise thet decibel values of the measured
sound pressure, it is easier to recognize the small values as for example in the side
lobes (Fig.4.15b). For some applications it is advantageous to represent the angle
in a linear diagram (Fig.4.21), because it makes evaluation easier.

The decibel system of measurement has already been introduced in Section 2.1
and we must remember that the ratio of two sound pressures is expressed in decibels
by the formula

Ap=201gp,/p,dB. “.7)

0°
750

a b

Fig.4.15. Angular characteristics for large distances from the oscillator. a Values of the sound
pressure in a linear plot; b the same plotted in dB
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If the ratio of sound pressures is 1000 :1 then Ap = 60 dB, and 20 dB represents a
pressure ratio of 10:1.

Isobar presentation. The lines connecting all points of equal pressure in a sound field
are called isobars and usually their pressure values are calibrated in decibel. The va-
lue —6 dB in Fig.4.16 means that the sound pressure on this isobar is about 1/2 of

Fig. 4.16. Lines of equal sound pressure, plotted in dB. Also the distance from the radiator is
plotted in a logarithmic measure

Fig.4.17. Spatial distribution of the sound pressure plotted in linear values on a half plane
through the radiator, [1686]
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the reference value, which in this case is on the axis in the same perpendicular sec-
tion. It might also be used with reference to a fixed value for the whole sound field,
for example at the centre of the oscillator, but in what follows we prefer to make use
of the former system.

Figure 4.16 represents a longitudinal section through the axis of the oscillator.
The spatial field may be circularly symmetrical but need not be since it depends on
the shape of the source.

The isobar presentation is well suited for beam plotters or for transparent
screens. The zones between the lines may also be coloured for clarity.

Three-Dimensional Display. If the sound-pressure amplitudes are plotted on a plane
perpendicular to the axis, we obtain a three-dimensional mountain representing the
sound pressure (Fig.4.17). The shape of the rear-edge section is identical to the
presentation in Fig.4.19.

The axial distances in Fig. 4.17 are plotted linearly, but are normalized in terms
of the near-field length N. The distances perpendicular to the axis are expressed in

125+

dB
Fig.4.18. Sound-pressure mountain
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Fig.4.19. Sound pressure on the axis
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multiples of the oscillator radius and we will make more use of this normalized
measurement in future treatments of beam shape and configuration.

To obtain a three-dimensional impression of the sound field we may also plot
the values perpendicular to a plane across the axis as illustrated in Fig.4.18. Wher-
eas Fig. 4.17 is derived from calculated values, Fig. 4.18 has been obtained by mea-
surements made line by line with a miniature microphone in an actual sound field,
cf. [244 and 790].

Beam Profiles. We obtain much simpler presentations if we plot only a single profile
of such a sound mountain either across or along the axis. Figures 4.4, 4.5 and 4.19
are examples.

4.4 Sound Field of a Plane Circular Piston Oscillator

We have already introduced this simplest case of a sound field in Section 4.1. Now
we will calculate the beam shape along and across the axis.
According to [38] the sound pressure on the axis is given by the formula

p=po2sin (1;— [V(Dr2)y? + 22 - z]) 4.8)

where z is the distance on the axis from the centre point of the disc and D its di-
ameter.

As we have seen negative values mean phase reversal.

Figure 4.19 shows the shape in absolute values of Eq. (4.8); see also [38].

Because of the sine function the pressure oscillates between zero and 2p, and
the distances z of the maxima are given by

%[V(D/2)2+22 —z]=(m+n)n. (4.9)

Therefore we have maxima form=1/2and n=0,1,2,3 ...
and minima form=1 andn=0,1,2,3....
See also [975].
If one solves the equation (4.9) to obtain the distance z for the position of the
extremes, it follows that

>y %

_ (D*44) = (m + n)?
= 2(m+ n)

(4.10)

The term (D%/44) represents the well-known near-field length N, (Egs. (4.1) and
(4.2)), and if we normalize Eq. (4.10) in terms of this value we obtain

1—(m+ n)?(24/D)?

zZ/N= 2(m+n)

4.11)
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Because z must be positive, in Eq.(4.10) only those values of n are allowed for
which z= 0, and thus

n=(D/22)—m (withm=1/2o0r1). 4.12)

Therefore a circular radiator such that D/A = 4 will have only two pressure maxima
and two minima, one of which lies exactly at the center of the disc, where z = 0.
Table 4.1 gives other values of the positions of maxima and minima.

For large values of z and D/4, Eq. (4.8) may be simplified as:

. [nD?
P=Dpo 251n( 8/12) (4 13)
__mD>_ N S ’
Pomggy TP, OF Thy

where § is the area of the oscillator, and we see that the sound pressure decreases as
1/z. This is the same distance law as that of a spherical wave, as seen in Section 3.2.
Equation (4.13) therefore means that at large distances the special shape of the ra-
diator is no longer of influence but only its area. In fact all sources at large dis-
tances act as point sources. Figure 4.20 shows the sound pressure on the axis ac-
cording to Eq.(4.9) and also its approximation by a spherical wave. This
approximation is too inaccurate at shorter distances and for example at z= N it

is % times too large, i.e. about 57%. However at 2N it is 11% inaccurate and at
only 3 %.

Table 4.1. Position of extreme values of sound pressure on the axis
of different circular disc oscillators

(D/A)=4 (D/IA)Y=1
Maxima Minima Maxima Minima
2(m+n) z/N z/N z/N z/N
1 0.93 0.98
2 0.37 0.46
3 0.14 0.27
4 0 0.17
5 0.10
6 0.04
7 0
3 r—
i \\
! \\\ sphere
HT7T
=Y | F \\\\\
L Fig.4.20. Sound pressure p on the
axis of the radiator as shown in
0 N W sy  Fig.4.19; dotted line is the sound

Z— pressure of a spherical wave
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Within the near-field the pressure on the axis oscillates between zero and 2p,
but in the far-field it decreases continuously. Not until the 3-fold near-field length,
3N, is it reduced to the average value of the near-field, p,. The range between N
and 3N is sometimes called therefore the transit field [1331].

In the transverse section at the points of maximum or minimum pressure we also have

peaks and troughs as Fig. 4.5 shows. Here the number of them also depends on D/4 but at the
principal axial maximum the side maxima do not reach the principal value, 2p,.

In the far-field the maximum sound pressure is always found on the axis and
here the description of the field by an angular characteristic makes sense (see
Fig.4.15).

At the distance z the relationship between the pressure and the angle y is given
by the formula
Ji(X)

X

where X=m(D/1)sinyp.

p=2p, 4.14)

J; (X) represents a Bessel function, the values of which one finds in mathematical
tables cf.{26]. p, is the value on the axis at z where we have

JiX)/(X)=1.

Equation (4.14) has been already displayed in polar coordinates in Fig.4.15 but
for better clarity Fig.4.21 shows it in rectangular coordinates.

With the help of the left-hand angular scale one can determine sound pressure
values on either side of the maximum for the special case of D/A = 16. For example
at y = 4.3° it reaches its first zero point and this angle is called y,, the angle of diver-
gence. With the right-hand scale other values of D/A can be evaluated. In this case
we have made use of the approximation for small angles

siny =~ (11/180°) y° = y°/57°.

~00 %0 73 ~44 -20 dB ¢

4° ~ —12
40 \\ : ;8
4o \\ | 050
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For 24 mm dia. radiator % e
aN0° + 1 0 2
l 0 and 1.5 mm wave length Aoz :S\
—Hoy <
2° / =06 er{
/ ,
3° 08
4o 10
< 1% Fig.4.21. Relative sound pressure
0 20 40 60 80 % 100 in the far-field plotted against angle

Relative acoustic pressure y for D/A =16
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Example. For an oscillator with D/A =4 (D =24 mm, A = 6 mm, which corresponds to a fre-
quency of 1 MHz in steel) we achieve half of the maximum sound pressure at the value 0.7 on
the right-hand scale, from which we calculate the appropriate angle from:

4(p°/57°) = 0.7: hence y°=10°.

The angle of divergence, y; also results from the theory of diffraction (cf. [32]) in

which .
sin yp = 1.22 (A/D) (4.15)

for a circular disc. For small angles, viz. less than 10°, we have approximately
Yo =70°(A/D). (4.15)

Specific angles, where the sound pressure has decreased to 50% or 70 % of the
maximum are called y,5 and ¥, or generally y, with the value @ < 1.

The upper scale of Fig.4.21 shows the pressure reduction in decibel in which
the values 50 % and 70 % correspond to —6 dB and —3 dB respectively and a sound
pressure of zero corresponds to infinite decibel

A

Yos = V-3a8>
A

Y01 = V-6dB-

In the echo method of ultrasonic material testing we are not so much interested in
the angular divergence of the outgoing beam (the so-called free-field) but more in
that of the reflected beam, the echo field. Here we need to know what percentage of
the maximum axial echo we will still receive from a small reflector lying off the beam
axis.

Because the angular characteristics of a given oscillator acting as transmitter is
the same as when it acts as a receiver the overall behaviour is provided by the
square of the characteristic, and this fact has to be taken into account when angles
of divergence are considered. y, is the same in both cases, but not for any other va-
lue of y,.

If y,, is considered for example, because 0.72=0.49=0.5, we have

Yo.7 (free-field) = %Yos (echo field)
or using decibel-values

YAdB (free-field) = V24dB (echo field)

and the corresponding angles of divergence are given by the relation

sin p, = sin yagg = K, (—%) . (4.16)

Table 4.2 gives the values of the factors k, for both free-field and echo field in
the case of a circular disc.

Equation (4.16) does not depend on the distance z of the source. Equal reduc-
tions of an echo from a small reflector, compared to one in the axial position, occur
at the same angle to the axis for all distances.

The half width b of a beam at the distance z can be calculated in accordance
with Fig.4.22 as

b=ztany = zsiny = zk(4/D). 4.17)
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Table 4.2

Free-field k, Echo field

o AdB « AdB
0.84 -1.5 0.37 0.71 -3.0
0.71 -3.0 0.51 0.50 -6.0
0.50 —6.0 0.70 0.25 -12.0
0.32 —10.0 0.87 0.10 —20.0
0.25 —12.0 0.93 0.6 —24.0
0.10 -20.0 1.09 0.1 -40.0
0 —oo 1.22 0 —o

z
b
LI |\ Fig.4.22. Divergence of the beam from a
circular oscillator

Example. What is the width of an ultrasonic beam at the distance N using the edge criterion of
a decrease in the echo of 6 dB?

From Eq.(4.17) with z = N = D?/44 and taking k from Table 4.2 for an echo (A = —6 dB
gives k = 0.51) we obtain 25 = 0.25D. This result means that the beam is effectively focussed
at the end of the near-field, its sensitivity being concentrated there in a circle with a quarter of
the transducer diameter.

Example. How wide is the beam from an oscillator, having D/A = 16, at the distance of
500 mm?
From Fig.4.21 we have y, = 4.3° and using Fig.4.22

2b=2ztany, =2 X 500 mm X 0.075 =75 mm.

When using the pulse-echo method of testing we have to expect deviations from the above re-
sults if the pulse is shorter than about six wavelengths, or if the oscillator is excited non-un-
iformly, see Section 4.8.

Equations (4.16, 4.17 and 4.19) are only valid for values of D much greater than 4. With
decreasing D/A the angle of divergence increases to 90° remaining constant thereafter. The
free-field characteristics of a small transducer with D/4 =1 for longitudinal waves is nearly
spherical. The hemispherical shape, often erroneously expected, cannot be achieved, because
a free longitudinal wave propagating along a free surface cancels itself since there is a phase
reversal at the grazing incidence.

Figure 4.23 represents the angular characteristics of a point-source transmitter according
to calculations by Roderick [1275] (see also [442]). It has a nearly spherical characteristic for
longitudinal waves, and additionally off-axis transverse waves with two lobes on each side of
the axis. It is clear therefore that a small source of longitudinal waves will also transmit trans-
verse waves at an angle and the same is true of a receiver.

The point source directivity diagram has an important consequence in the generation of
oblique transverse waves by so-called angle probes (Section 10.4.2). If transverse waves are
generated by refraction of a longitudinal beam, the directivity characteristics according to
Eq. (4.16) are axially symmetrical, when calculated from the refraction law, Eq. (2.3), only if D
is much larger than A This would be the “geometrical” directivity, but with decreasing D/ it
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Longitudinal

Iransverse
Fig. 4.23. Directivity diagram for a point source on the surface
of a solid material, calculated by Roderick for a Poisson’s ratio
of 0.25

is increasingly affected by the point-source directivity of Fig.4.23. The calculated angle of re-
fraction is changed and the angles of divergence on each side of the axis are no longer equal
(see Wiistenberg [1644)).

In practice is is sufficient to have a simplified model of the beam. Figure (4.24)
shows the more interesting cases when the edges of the beam give an echo reduc-
tion to 50 % or 10 % of the maximum.

These beam shapes are given in the far-field by the appropriate angle of diver-
gence (in Fig. 4.24 the —6-dB, and —20-dB lines respectively). The beam can be re-
garded as a search light with an angle of divergence 2y. From Eq.(4.17) we obtain
the beam width as determined by the radius of the oscillator

2b z
B="" =k, 4.18
D~ keon (4.18)
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Fig. 4.24. Beam width of echo sensitivity, measured by the oscillator radius. a for a small ref-
lector and —6 dB decrease of the echo relative to an axial position; b for —20 dB. The shape in
the near-field is based on experimental results
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According to Fig.4.24 the —6-dB cone shape can be assumed valid only beyond the
distance 0.8 N and the —20-dB cone only after a distance of 1.3 N. At the near-field
end the —6-dB cone has a width B = D/4, its quasi-focus. The —20-dB cone at the
near-field end is also smaller than the oscillator diameter, being approximately
B = D/2. It only reaches the full diameter D at 2.3 N.

Regarding mathematical treatments of the sound fields see Cavanagh [221],
Zemanek [1686], Tojoetta [1528] (also concerning annular oscillators), Archer-Hall
[79, 80].

4.5 Sound Fields of Non-circular Piston Oscillators

For many applications rectangular or square oscillators are in use. We consider
rectangular shapes with the larger side D, =2a and the smaller one D,=2b
(Fig. 4.25).

In the near-field the isobars are of course no longer circular this shape develop-
ing only at large distances. The sound-field structure depends on the ratios D,/
and D,/A and for a general treatment of rectangular radiators it is useful to normal-
ize the distance z in terms of the quasi near-field length D3/44 and the transverse
dimensions in terms of D,. This normalization is also used in Fig.4.25 (see also
[475, 38)).

The pressure-distance curves depend on the ratio of the two sides. Figure 4.16
shows the isobars in the longitudinal section of a square oscillator whereas
Fig.4.26 represents a more generalized display of the pressure-distance curves for
several rectangular radiators with ratios D,/D, varying between one and five times.
In the far-field the pressure is reduced in inverse proportion to the distance. There
is still a maximum of the sound pressure in the region of the quasi-near-field length
D?/44, but it is an absolute maximum only for approximately square oscillators.

Table 4.3. Values of factor A for the cal-
culation of the near-field length of rec-
tangular piston oscillators

ratio of the sides h
b/a

1.0 1.37
0.9 1.25
0.8 1.15
0.7 1.09
0.6 1.04
0.5 1.01
0.4 1.00
0.3 0.99
0.2 0.99

0.1 0.99
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Fig. 4.25. Isobar presentation of the sound field (free-field) calculated for a rectangular oscil-
lator with b/a = 0.6. a Section at the distance z=0.8a%/4; b at z=3.2a%1
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A simple formula for the calculation of the axial sound pressure, as in Eqgs. (4.9)
and (4.14), does not exist and Fig.4.26 has been calculated by numerical integra-
tion [1341]. For rectangular oscillators driven by pulses see [441].

If one defines as near-field length the distance of the last maximum on the axis,
Eq. (4.2) is still valid for rectangular oscillators using the values of Table 4.3

N=h(D?/44) = h (a?/2). 4.19)

The directivity of a rectangular oscillator is no longer circularly symmetrical. In a
similar way to Eq.(4.14) we have

_ sin X; sin X,
P=po (_‘—"Xl ) (—_—_Xz ) 4.21)

with X, =n(D,/4)siny,,
X, =7n(D,/2) sinyp,

7
7 A

Freefield amplitude of pressure
&
T ,\ﬂ\
| &
D -2
=y
>
g
~
I
Vi 1
v d /
AN
\i\
/
4 /
/.
(:) !

_ N
i j\/‘ N
- &> \\
_]8 1 ! 1 Lol L]
a1 02 03 0405 07 10 5
fo W/ LJu——

Fig.4.26. Sound pressure on the axis of several rectangular oscillators with sides ratio b/a
(calculated from [1341])

~

Flg 4.27. Three-dimensional view of the directional characteristic of a rectangular radiator
(without secondary lobes), ratio of sides 2:1, D,/1 ~ 4, Dy/A=2
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Table 4.4.

Free-field k, Echo field

« 4dB o AdB
0.84 -1.5 0.32 0.71 -3,0
0.71 -3.0 0.44 0.50 -6.0
0.50 -6.0 0.60 0.25 -12.0
0.32 -10.0 0.74 0.10 -20.0
0.25 -12.0 0.79 0.06 ~24.0
0.10 -20.0 0.91 0.09 —-40.0
0.00 — 00 1.00 0.00 —

using the two independent angles of divergence y; and y,. Figure 4.27 illustrates the
basic beam shape without side lobes. The larger side has the better directivity, that
is the smaller divergence angle. The section through the beam in the far-field is
therefore an ellipse with the larger axis parallel to the shorter side of the oscillator.
To calculate the angles of divergence and the beam widths of rectangular oscillators
one uses Egs. (4.16) and (4.17) as for circular oscillators, but using the factors k,
from Table 4.4

b, = ztany, = zsiny, = zk,(4/Dy), 422)
b, = ztany, = zsiny, = zk,(4/D,) .
For a complete mathematical treatment of rectangular oscillators see [475, 1156]
and for experimental measurement of the near-field length see [1336, 1342]. A pis-
ton oscillator of arbitrary shape is calculated in [1503). For sound fields of elec-
tromagnetic oscillators see (Section 8.4 and [764, 1172].

4.6 Sound Fields at Boundaries and with Mode Changing

If a sound field penetrates the boundary between two different materials it is of
practical interest to know how the near-and far-fields behave. For example in the
so-called immersion testing, the sound is first transmitted through a liquid before it
enters the specimen. Figure 4.28 shows what happens at an interface without any
mode changing. The sections of the beam in each material are modified in inverse
proportion to the respective velocities of sound. The sound field in steel is short-
ened by a factor 4, because Cgeer/ Cuater = 4-

An important point should be noted regarding equivalent distances in the two
media. Distances having equal transit time are directly proportional to the sound ve-
locities

SI/SZ = Cl/CZ (423)
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Fig. 4.28. Sound field at an interface without mode changing. a Field in water only, simplified;
b interface water/steel in the far-field, perpendicular incidence; ¢ oblique incidence

e

Fig. 4.29. Directivities of angle probes used on steel, measured by [1648]. a Nominal angle of
refraction 60°; b nominal angle of refraction 70°

but measured in terms of near-field length they are in inverse proportion to the ve-
locities:

;%%— =c,/¢ 4.29)
because

_Db*_D¥

44 4c

Therefore distances with equivalent transit times are related to distances equivalent
in the sound field in proportion to the squares of the velocities:

5 / S _ )
51/Ny | 5,/ N, CUS (4.25)

If there is a mode change on refraction, for example longitudinal to transverse at a
liquid/solid interface (cf. Sections 2.3 and 2.4), the sound-field characteristics in
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Fig. 4.30. Isobars in a section through the
O beam of Fig.4.29a. a Measured; b calcu-
b lated by [1648]

the solid material are governed by the transverse velocity. However, since a beam
may be considered as being composed of a series of plane waves of different inci-
dent angles depending of the width of the beam, the complicated laws of refraction
of Section 2.4 have to be applied with the consequence that the refracted beam is
no longer symmetrical to the axis of maximum amplitude (Figs.4.29 and 4.30).

For calculations of the sound field of angle probes used on plane interfaces see
[1666, 1621, 564]; on curved interfaces [1550]; and with electromagnetic excitation
see [120].

For guided waves the sound fields are similar to those of free waves, keeping in
mind that they consist fundamentally of combinations of the two basic wave types.

4.7 Focussed Sound Fields

By focussing a sound beam we can achieve a higher sensitivity and resolution.
Usually we understand by the term “focus” a concentration of the beam to a size
less than the diameter of the oscillator. In Section 4.4 we have seen already that a
circular flat-disc oscillator has a quasi-focus at the end of the near-field, this being
a natural one produced by diffraction phenomena. Section 3.4 showed additional
means such as curved mirrors and lenses which are able to focus a beam and it is
when such devices are used that the term “focussing” is normally used. However,
even with “non-focussed” fields the diffraction effects produce an effective concen-
tration of sensitivity and because of the relatively large wavelengths used for testing
materials both effects play their focussing role.

We consider the field of a spherically curved circular disc oscillator. Accord-
ing to [1144] the axial pressure is given by the formula:

sin[% (\/(z-h)“--a—z —z)”

r (4.26)

where h=r—a/r2——
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and r is the radius of curvature of the oscillator. The first hyperbolic factor in
brackets represents the influence of the geometry, and the second one represents
the diffraction, depending on D and A.

Figure 4.31 shows the echo of a point reflector in the focussed field of
Eq.(4.26), with D=10mm, r =33 mm, 4 = 0.5 mm.

The position of the maximum sound pressure, or the focus (arrowed), is not at
the distance r, as expected from the geometric conditions where it would have an
infinite value (as indicated in Fig.4.31). The finite value of p can be calculated
from Eq. (4.26) by iterative methods only.

The ratio of the focal distance to the near-field length of the unfocussed radia-
tor z¢/N is called K, the focus factor, and it is always less than 1,

ie. K=2z/N 0<K=l. 4.27)

Its value as a function of the normalized radius of curvature is shown in Fig. 4.32.
For small values of r (i.e. strong curvature) the curve follows approximately the law
zr=r, which means that the geometrical focussing effect is the main one, but for

10
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O
g

0z Fig. 4.32. Focus factor K as function of the radius of curva-

ture of the oscillator (normalized by the near-field length)

U;g" 1 1 calculated from Eq.(4.26) for D/A =20, but still valid for
/N ——— D/4 =10, as long as r/N>0.2
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larger radii it approaches unity asymptotically. The focal distance can never be
made larger than the near-field length.

The focus factor K also determines the concentration of the beam by the rela-
tionship

B=KB. (4.28)

where B, is equal to the beam diameter characteristic of the plane radiator at the
end of the near-field, see [1343, 1345].

If K is greater than 0.6 the degree of focussing may be considered small, and
less than 0.3 as strong.

The smallest possible radius of curvature is r;, = D/2, because then the radia-
tor is a complete hemisphere. For D/4 =20 as assumed in Fig.4.32, we obtain
therefore r,;, = 0.1N (see also [1343]).

The sound-field dimensions of a section perpendicular to the axis can only be
formulated at the focus. As with the plane radiator it is given by a Bessel function:

2J(X)
X

4.29)

P = Dmax

where
X=mnDq/Az;

and g is the distance from the axis. z; and pn,, have to be calculated from formula
(4.26).

A plane radiator focussed by an added lens is a design usually used within a li-
quid and since the sound velocity of the lens material is higher than of the liquid
the lens must be plano-concave, with the concave surface having a radius r.

The sound field in this case is similar to that of a concave radiator. The axial
pressure according to [1332 and 1349] is given by the relationships

2 = (], e D (,_
p—pol__Z—sm[/1 ( (z—h)*+ 2 (z c}h))]
2y
where (4.30)
D? R{1 = (¢y/e)?] + a?
— 2 _ 2 =
h=r= "= AT TR - (e

and the velocities ¢; and c, are those corresponding to the lens and the liquid re-
spectively.

Figure 4.33 gives the curve for the case D = 10 mm, r =33 mm, 4 = 0.5 mm, the
same values as in Fig.4.31.

The focal distance is somewhat greater than that in Fig. 4.31. A lens has not the
same focussing effect as a curved radiator with the same radius, but the focal distance
is much shorter than the geometrically calculated one z = r/(1 — ¢,/c;) in accord-
ance with Eq. (3.6).

The sound-pressure distribution across the axis at the focus is also given by
Eq. (4.29), but now the focal distance and the sound-pressure maximum have to be
calculated by Eq. (4.30).
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Example. A plane radiator of diameter D= 10 mm, 4 = 0.5 mm, (N = 50 mm) is to have its
natural sensitivity improved by spherical shaping. The spherical radius must be evaluated for
a reduction of focal distance to 25 mm. At this distance K = 0.5 and according to Fig. 4.34 the
sensitivity improvement is 30 dB. The corresponding radius of curvature must be calculated
from Eq. (4.26) by iterative approximation, (by using a computer) the resuit being r = 33 mm,
which value is also used in Fig. 4.31.

The sensitivity improvement of 30 dB is compared with the echo height immediately in
front of the plane radiator so that compared to the natural focus distance (N) where the pres-
sure is 2p, (i.e. an echo 12dB greater than p,), we have a nett gain therefore of
30 — 12 = 18 dB which means an echo-height increase of 8 x.

The sensitivity of the plane radiator can be improved more simply by using a plano-con-
cave iens of radius 33 mm as a focussing device. Equation (4.30) has been piotted in Fig.4.33
for this lens curvature and from it the new focal distance f is 35 mm, with a corresponding K
value of 35/50=0.7. For these conditions Fig. 4.34 indicates a gain figure of 22 dB, the nett in-
crease being only 22 — 12 = 10 dB, an echo improvement, by this method, of only 3 x. Regard-
ing the full theory of focussed circular radiators see [1332, 1337, 1339].
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Fig. 4.35. Isobars relating to an axial section. a for a plane circular non-focussed radiator;
b for the same but with spherical curvature giving K = 0.6, cf. [222]

The whole sound field of a focussed oscillator compared with a non-focussed
one of equal diameter is shown in Fig. 4.35.
To summarize, the following general rules should be kept in mind:

— By geometrical means a plane radiator can be focussed only to distances shorter
than its near-field length;

— The complete near-field of the plane radiator is effectively compressed by the
focussing into the space between the radiator and the new focus;

— The far-field is also compressed into a range lying nearer to the new focus;

— In the far-field range, beyond the focus, there may also appear some new zones
of interference as in the near-field;
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Fig.4.36. Focussing techniques. a Spherically curved radiator; b plane radiator with plane-
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Fig.4.37. Focussing radiator with cone-shaped lens [1149], K = 0.3, smallest beam width
2.3 mm, angle of divergence 1.8° measured in steel

— The smallest beam width which can be achieved by focussing depends on the
ratio D/A. For equal size radiators therefore the focussed beam width is propor-
tional to the wavelength.

Figure 4.36 and 4.37 show some possibilities of focussing the field of piezo-elec-
tric circular radiators. The examples in Fig.4.36 are mainly designed for immersion
testing, but may be used also for contact in combination with special adapators.
That in Fig.4.37 may be used for both methods the lens having a conical shape. By
this method the focus is less sharp but has a longer axial range (see also Sec-
tion 10.4). This lens is made from a combination of aluminium and Perspex, but it
may also be of a combination of two plastics, for example polystyrene and Perspex.

The principle of the “axicon” has also been used, that is a combination of annu-
lar oscillators of a conical shape combined with a concentric conical mirror, cf.
[1099].
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Focussing of a beam may also be needed in only one plane through the axis so
that the radiator may then have a concave cylindrical shape or may be focussed by
a cylindrical lens. In both these cases it is preferable to use rectangular radiators cf.
[696].

For information regarding focussed ultrasonic fields se also [1332, 574, 130, 1182, 936,
1580]. For Schlieren optical photographic pictures see [470]. For the transformation of the cir-
cular-disc field see [1332, 222, 362, 673]. For more examples of the design of focussed ultra-
sonic probes for the testing of materials see [1343, 1345, 1349]. See further [1343, 417, 1663,
1279], for focussing in one plane only [696].

4.8* Sound Fields with Pulse Excitation
and Non-uniform Excitation of the Oscillator

We have already seen that there are considerable differences in the sound fields
generated by long oscillations or by pulses. Figure 4.38 shows short pulses originat-
ing from different points of a radiator and these may be unable to interfere at the
observation point.

Even if two pulses overlap each other with a path difference of one half-wave-
length (Fig.4.39) they are not cancelled completely and hence the sound fields of

Fig.4.38. Short pulses may be unable to interfere

Fig.4.39. Short pulses cannot completely
cancel each other even with a half-wave-
length transit path difference

. <> o Aﬁjzw_
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Fig.4.40. Sound pressure on the axis of a plane circular-disc radiator excited by different
pulse shapes [1424]

pulsed radiators have many less fluctuations than have been described above. There
are no real zero points and the maxima are smaller.

Figure 4.40 shows, for example, the sound pressure on the axis corresponding to
different pulse lengths. In the near-field the differences are substantial but not in
the far-field. As well as the changes on the axis for very short pulses the maxima
and minima off the axis, as well the side lobes in the directivity diagram, also dis-
appear. Some focussing methods are also influenced if they depend on wave inter-
ference. Even when focussing is carried out with curved radiators, when the single
wavelets at the focus point are added up without transit time differences, the field
away from the focus is changed appreciably (cf. Fig. 4.41).
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Fig. 4.41. Sound field of a focussed radiator of D/A = 20 according to [1611]. a continuous ex-
citation; b excitation by a pulse of two oscillations only

The following general rules should be kept in mind:

— The pulse length does not affect the far-field and the main lobe very much;

— Only pulses of less than six oscillations have a substantial influence on the
sound field;

— When there is appreciable material absorption, which is usually greater for
higher frequencies, we get pulse prolongation especially at longer transit paths;

— When using focussing lenses unwanted pulse distortion may also take place.

See further the literature [114, 468, 611, 697, 733, 1020, 1462, 1610, 1643, 226,
1274, 1469, 1126, 892, 410, 629, 1598, 1623].

Up to now we have assumed that the whole surface of the radiator is oscillating
at the same amplitude, but an oscillator mechanically fixed at its edges will have vi-
brations of reduced amplitude at that point. Furthermore even a freely oscillating
piezo-electric plate excited by an electric field between electrodes on its surfaces,
also has less excitation at the edges because here the strength of the electric field is
reduced. If a probe has only partial contact with the specimen, for example on a
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Fig. 4.42. Directivity of an oscillator with D/4 = 16, but with contact, or oscillation, reduced
to an annular zone

curved surface, or when placed in a concentric position over a hole as in Fig. 4.42,
the effect on the sound field is the same as that achieved with only partial excit-
ation. The side lobes become more pronounced and the pressure on the axis in the
far-field is reduced in proportion to the reduced excitation area.

The near-field length of a radiator which is only excited on a portion of its sur-
face is not affected so long as the edge is allowed to oscillate at full amplitude as for
example in Fig.4.42. If the excitation is reduced progressively from the centre to
the edge, then the near-field length is reduced and it is necessary to calculate with a
smaller diameter, viz. the effective diameter of the disc, Dg.

Non-uniform excitation is often intentionally used for probe design so as to
smooth out variations in the near-field and maintain the directivity in the far-field.
To keep the directivity axial all such methods have to be circularly symmetrical. Fi-
gure 4.43 shows how the directivity and the axial sound pressure varies if the excit-
ation of the disc from the centre to the edge is varied according to different mathe-
matical functions.

The first example is the d-function, which has the unit value at only one point,
here in the centre of the plate, at ¢ = 0. This represents the well-known point-
source, but in practical terms it is not useful at all. The second example is the un-
iform excitation over the whole plate, which gives the well-known directivity and
pressure functions as shown in Figs.4.19 and 4.21.

The optimal results are given by the Gauss-function, as shown in Fig.4.44,
(curve b), as a comparison with the quasi-uniform excitation with edge effect
(curve a). The advantage may be seen from the axial pressure curve, which has no
longer any maxima and minima [850].

The Gauss function is given by

e_Oz/Rg

where g is the radius coordinate as in Fig. 4.43 and R, is a particular radius smaller
than the physical radius of the disc. The greater the actual radius the better is the
uniformity of the near-field and the directivity. In practice an increase of 50 % is
ample.
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Fig. 4.44. Axial sound pressure of a circular-piston oscillator with two different distributions
of the excitation voltage. Type a) Overall excitation by a uniform electric field but reduced at
the edge by leaking field lines. This gives a sound pressure curve a with reduced fluctuations.
Type b) Excitation in the form of a Gauss function applied over a larger diameter R > R,,
which completely suppresses variations in the sound pressure b, [852], [620]
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According to [620] the near-field length has now to be calculated as

2
Ngayss = _1% .
Hence R, is the equivalent radius of the Gauss-oscillator.

For practical materials testing the Gauss-probe has one disadvantage. Since the
radius is larger than that of an ordinary probe with the same near-field length and
far-field sensitivity, the larger contact area required may not be found in all cases.

After these more theoretical principles some methods for the practical manufac-
ture of probes having non-uniform excitation patterns can be mentioned:

— Some regions of the piezo-electric plate can be depolarized by local heating be-
yond the Curie temperature;

— By subdividing the electrode into several portions for each of which the exciting
voltages are different;

— By using electrodes covering only a part of the surface, for example in form of a
star.

In the last case the star-shape can be calculated to give a total circumferential
dimension at each radial distance corresponding to the reduced voltage compared
to the center as required by the Gauss-function. The Gauss-oscillator may also im-
prove the sound field of focussed probes. Its theory is discussed in full in [444].

In addition natural focussing of the field can be improved by appropriate dis-
tribution of the exciting voltage. According to [821] the best focussing, without
using geometrical methods, is obtained by exciting the edge only in the so-called
annular oscillator.

As already mentioned the field is always further equalized by using short excit-
ation pulses. The shape of the piston oscillator if it deviates from the circular form
also helps in this respect, for example by using square, rectangular, elliptical or
even fully irregular shapes. The circular form excited by long pulses is the most un-
favourable combination for suppressing the variations in the field. See also [574,
611, 308, 612, 1424, 252, 444, 1291, 1602, 705, 708, 1565, 324, 696, 1529].



5 Echo from and Shadow of an Obstacle
in the Sound Field

5.1 Reflection of a Plane Wave by a Plane Reflector

The problems of material testing by ultrasonics can be illustrated qualitatively by
an optical experiment.

We can imagine a darkened room having mirror-like walls and to represent de-
fects there are suspended objects made from crumpled aluminium foil. An observer
must find these objects by using a sharply defined search-light beam and must eval-
uate their size from any optical reflections received. Reflections from a wall will
only be seen if the incident angle of the search-light beam produces a reflection di-
rected towards the eye of the observer. However, some faint impressions of the walls
will also be noticed if the mirrors are dusty or of a rough texture. The “defects”
show themselves by the many individual and faint reflections from those small
areas of the foil which are just orientated correctly for a good reflection. These will,
however, change very quickly according to the geometrical positions of both the
search-light and the eye. A suspended small plane mirror will be visible only very
rarely if by accident it has the right position, and in this case it will give a rather
strong reflection. In other positions, however, the observer may receive only faint
scattered indications from its edges.

This illustrative comparison is of course never fully satisfactory because of the
large difference between the wavelengths. Nevertheless it does show the difficulties
and illustrates that we have to make use of two different types of reflection, the
rather rare mirror-like reflection and the indications caused by scattering or diffrac-
tion.

We can understand the mathematical method of calculating a reflection with
the aid of the Huygens’ wavelets (Fig.5.1). The excitation of a small surface ele-

Transmitter

Reflector

Receiver Fig.5.1. Adding up Huygens’ wavelets on the

surface of the reflector and the receiver
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ment of the reflector is the sum of the effects of all incident wavelets originating
from all points of the transmitter and in the ultrasonics case they have to be added
up taking account of both amplitude and phase.

If we have thus calculated the excitation of all surface elements of the reflector,
we must then do the same for all the surface elements of the receiver which is being
excited by the wavelets received from the reflector.

If we consider a piezo-electric receiver (see Section 7), we know that the re-
ceived sound pressure generates a proportional electric charge and therefore to ob-
tain the total echo charge, we must add up all the individual charges of the surface
elements again taking into account both amplitude and phase. The resulting charge
is proportional to the average of the sound pressure received.

In mathematical language this means that the echo voltage is proportional to
the triple integral of the wavelet ae’ (amplitude and phase) over all area elements ds
of the transmitter 7, the reflector R, and the receiver E

I_f_[ae"“’ds.
T R E

This integral can of course only be solved if all three surfaces can be described
by mathematical formulae and cannot be evaluated for the random shape of the re-
flector. Furthermore it would only be correct if no mode changing has taken place
and therefore is only true for longitudinal waves in liquids and gases.

In simple cases one may use graphical methods as in Section 4.2. In a very sim-
ple case, however, (Fig. 5.2) we can see the result immediately. The obstacle is a to-
tally reflecting plane disc situated in the path of a much larger plane wave produced
by a large plane transmitter. The surface areas can be identified as Sk and Sy respec-
tively. When the transmitted beam strikes the reflector perpendicularly it also emits
a plane wave which returns perpendicularly to the transmitter. Because all surface
points of the obstacle lie on the same wave front they have the same phase and
therefore we can add the amplitudes only, without regard to the phase. The re-
flected wave is therefore identical to the wave emitted from a piston oscillator of
the same size and shape so that we may consider the reflector as a secondary oscil-
lator.

For a circular disc-shaped reflector we know the properties of its sound field
from Section 4.1, with the near-field according to Eq.(4.2) and the directivity as
shown in Fig.4.15a.

In practice the transmitter usually also acts as a receiver when we use pulse ex-
citation. After having sent out the transmitted pulse it receives the echo, after a de-

line

3] ST

] l l Fig.5.2. Plane reflector in a plane wave
l (a) and the reflected plane wave shown
a b separately (b)
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lay corresponding to the transit time for the pulse to travel to the reflector and back,
and we wish to know the amplitude of the echo received. In Section 7.2 we will see
that the voltage generated by a perpendicularly incident plane wave is proportional
to its sound-pressure amplitude and to that part of the surface of the receiver struck
by the wave. If as in Fig.5.2a the wave is reflected by a very large wall, the whole
emitted wave is returned without loss, and we can call the corresponding echo
height H,. The limited reflector in Fig.5.2b receives only a part of the wave and
generates smaller echo voltage H, and we can see that both echoes are in the propor-
tions of their areas

Hr/H(): SR/ST' (51)

The echo H, is an important reference echo, of which we will frequently make
use, and in practice it is generated as the back-wall echo of a plane parallel-sided
and smooth plate made of the same material as the specimen in which defect
echoes are to be evaluated.

The area of the transmitter Sy in Eq. (5.1) is known and if we can measure the
ratio of a reflected echo to the reference echo (usually by way of the signal ampli-
tudes on a cathode-ray tube), we can find the reflector area Sy from this equation.
This is the solution of our task.

We may even neglect the condition that transmitter and reflector are of circular
shape as long as the transmitted waves can still be considered as plane, otherwise
the size of the reflector is under-estimated. Amendments to the method for non-
planar waves, for larger distances and for small reflectors follow below (Section 5.3).

At this point we will consider a non-parallel position of the reflector, but with-
out considering any mode change, or the edge waves as described in Section 2.6. In
Fig. 5.3 the leading wave front (1) has just reached the distant edge of a plane
reflector lying in an oblique position. The corresponding Huygens’ wavelet is just
being generated and together with the wavelets generated earlier a new wave front is
built up and forms the reflected plane wave. Of course no echo signal is produced if
the reflected wave fails to strike the transmitter/receiver but in Fig. 5.4 it does reach
the receiver and it is often erroneously assumed that an echo can therefore be ex-
pected. However, because the surface elements of the receiver are excited at differ-

A
e
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Fig. 5.3. Obliquely reflected wave constructed from the Huygens’ wavelets

Fig.5.4. An obliquely incident reflected wave, because of destructive interference in the
piezo-electric partial voltages, generates no echo from which the reflector size can be evalu-
ated
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ent phase angles in consequence of the varying transit paths of the wavelets the gen-
erated voltages cancel each other and no echo is received except for any diffracted
echoes from the edges of the reflector.

In the case of Fig. 5.4 when using short pulses the partial voltages do not cancel
each other completely and therefore some sort of echo is obtained in spite of the
oblique orientation. However, it is not possible to use this and the edgewave
echoes, to evaluate the size of the reflector in the simple way described above.

A way of solving this problem could be to divide the receiver into separated ele-
ments, the voltages of which would be added up after applying artificial phase
shifts. The directivity of such a “phased array” (see Section 10.4) can be altered by
appropriate regular phase shifting so that obliquely incident echoes could also be
received efficiently. For other means to make the receiver insensitive to unwanted
phase differences see [654].

5.2 Echo of a Reflector, DGS Diagram

The solution of our problem of assessing the area of a reflector from measurement
of its echo was straight-foward in the case of the geometry in Fig. 5.2, because both
amplitude and phase were constant on the surfaces of transmitter, reflector and re-
ceiver. We have approximately the same conditions when there is a large distance
between transmitter and reflector as long as they are both planar. Figure 5.5 shows
the sound-pressure distribution on the common axis of transmitter/receiver and ref-
lector.

The upper curve is already known to us from Fig.4.19, but smoothed out as in
Fig.4.44a. At the arbitrarily chosen distance of three near-field lengths (3N,) the
reflector acts as a secondary radiator with its own near-field length N,. Strictly
speaking the sound-pressure curve for the transmitter is only valid on the axis, but
at large distances it can also be assumed to be almost uniform over the area of a
small reflector. So in this case the reflector also acts as a piston oscillator and we
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Fig. 5.5. Sound pressure on axis (schematic) for the incident wave (top) and the wave reflected
from a reflector in form a circular disc (bottom)
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can assume that its axial sound pressure is represented by the lower curve, but tra-
velling from right to left.

For the receiver we may also assume the amplitude and phase of the reflected
wave is approximately constant over its surface because of the small path differ-
ences which apply between its centre and edge for the large distances between it
and the transmitter/receiver.

We can now calculate the reflector area, or its diameter D,. According to
Eq. (4.13) we know that the sound pressure of the transmitter on the axis is

__ nD}
D= Do 4z, 5.2)

and it is also approximately the initial sound pressure on the reflector radiator, po,.

Thus the resulting sound pressure over the whole area of the transmitter/receiver
will be

_ mwD!  n'DD?

Pr = Por 412’ = Do 164222

(5.3)

where the distances z; and z, are equal and are called z.

The initial sound pressure p, of the transmitter can be measured as in Fig.5.2
with a very large reflector, for example from the back wall of a flat plate, and if we
measure the height of this reference echo, as well as the echo of our defect-reflec-
tor, (in mm) from the cathode-ray tube screen, we obtain

Hr/HO = Pr/Po

From this relationship and Eq. (5.3) we can find the reflector diameter as:

D, = Mz VH,/H,
nD,

or by introducing the transmitter near-field length N = D2/44

D, = —g—‘]% JH/H, . (5.4)

This final relationship is the solution we seek since the diameter and near field
length of the transmitter, as well as the distance z of the reflector, are all known.

As already mentioned the reference echo height Hj is measured as the back-wall
echo from a flat plate, having a thickness which is small compared with the near-
field length. The back-wall echo must of course not be affected by any defects and
the surface quality of the reference plate must closely correspond to that of the sur-
face of the test specimen, so avoiding coupling differences. If the material under
test attenuates the ultrasound its attenuation factor (cf. Chapter 6) must be mea-
sured and can be taken into account by calculation.

Having found the solution for a small reflector at a short distance (Eq.5.1) as
well as for a small reflector at a large distance (Eq.5.4) by referring the reflected
echoes to the reference echo of a thin plate, it is easy to determine the solution for
a large reflector at a large distance such as the back-wall echo for a plane parallel
specimen.
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According to Eq.(4.13) at a large distance from any source the sound field is
equivalent to that from a point source and closely approximate to the spherical
wave form, so that its amplitude diminishes inversely with distance. If the beam
falls perpendicularly onto a large plane reflector at a distance zy it is specularly re-
flected so that the transmitter/receiver acts as a receiver in its own original sound
field at a distance 2zg. It receives therefore the sound pressure

N
DPr = Do 2ZR

on the axis and assuming as before that the central sound pressure is valid for the
whole area of the receiver, we obtain
By N 5.5
Hy, 2z

It must be stressed that the reflection from a small reflector is fundamentally
different from that of a large reflector, the latter being a mirror-like process whereas
the small reflector behaves in accordance with the rules of wave physics. This is to
be seen most clearly from the different distance laws for the sound pressures in
which the back-wall echo diminishes inversely with distance and the defect echo
with the square of the distance.

When using Eq.(5.5) we may incidentally use the specimen back-wall echo
rather than that from a reference plate, but in practice this method is attractive only
if the test specimen includes a region without any disturbing flaws and has a large
plane back-wall.
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Fig. 5.6. Relation between the distance of a reflector D (measured in terms of the near-field
length); relative height of the echo H/H, (left-hand scale) or gain G in dB (right-hand scale);
and the size of a reflector S (expressed as a fraction of the diameter of the transmitter D).
(DGS diagram for the far-field)
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Up to now we have dealt with situations where extreme conditions for the re-
flector size and distance apply. The intermediate regions for both size and distance
can only be calculated by using higher mathematics. However, for all practical pur-
poses it turns out that this region can be covered with relatively small errors by ap-
proaching it from each side. This has been done in Figs. 5.6 and 5.7.

To achieve the most general presentation we can normalize in terms of the ba-
sic transmitter characteristics as follows; N = near zone length; H,= back-wall
echo: D, = transmitter diameter and thence:

—;—l: distance of reflector D,
H = amplifier gain G,

H,

D,

F: reflector size S.

All the normalized values D, G and S are dimensionless quantities and the gain
G represents the ratio by which the reflector echo has to be amplified to make it
equal to the reference echo. Introducing D, G and S into the Egs. (5.4) and (5.5) we
obtain for the distant field

2

G =m % (small reflector) ,
. (5.6)
Gy *n—23 (back wall) .
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Fig. 5.7. Complete DGS diagram, as a combination of the theoretical solution for reflectors
close to the transmitter, Eq.(5.7), scale for S on the left hand; the theoretical solution for
the far-field as in Fig.5.6; and experimental measurements made in the sound field between.
Measurements were made with circular-disc reflectors in water [850, 852]
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For the reflector very near to the transmitter we obtain according to Eq.(5.1);
G.= 8% (for D,< D)
and G.,=1 (for D,z D,).

For a graphical representation of these relationships (Fig.5.6) logarithmic
coordinates are most suited, the gain G being expressed in decibels.

Figure 5.7 is the so-called general DGS diagram, where the theoretical solutions
for the reflector echoes coming from small distances, and large distances respec-
tively have been linked by echo measurements as in [850, 852]. We see that, for
small reflector sizes in the range §=0.1 to 0.3, the experimental echo values fit
quite well to both theoretical solutions, derived for the extremes of distance. In the
medium size range, for S = 0.5, differences have been larger but again fit very well
for larger reflector sizes and for the back-wall echo. The differences found in the
practical tests are towards smaller reflector sizes; that is a reflector or defect in this
range is usually measured as too small. In practice this means that it is advanta-
geous to measure a reflector using lower frequencies and with larger transmitters,
because then the S value will be smaller and the distance D will be further into the
far-field. This is also preferable since the local fluctuations in the near-field depend
quite sensitively on the pulse length and the transmitter design. In the intermediate
range therefore the general DGS diagram can only give approximate results but for
a particular transmitter design a special DGS diagram can of course be established
by experiment.

We have already seen that the oscillations of the near-field sound pressure more
or less disappear when using very short pulses and also when the transmitter is ex-
cited in a non-uniform manner over its surface. According to Fig.4.44b excitation
using a Gauss function distribution eliminates all fluctuations in the near-field. In
this case the DGS diagram can be fully calculated and differs from Fig. 5.7 espe-
cially in the intermediate range cf. [852]. In this case, however, the reflector diame-
ter has to be expressed in terms of the effective diameter of the transmitter which is
2R, and is thus smaller than the actual physical diameter.

In practice special DGS diagrams have found more application since they
are determined for an individual transducer, and give directly size and distance va-
lues in milimetres. These are usually available from the transducer manufacturers.

DGS diagrams have also been established for transverse waves when used with
so-called angle probes, cf. Chapters 19 and 20.

The elementary theory of the reflection of a longitudinal wave by an obstacle
does not take into account that this process in solid materials is always accompan-
ied by a partial mode change into transverse waves. In practice when the reflectors
are large compared with the wavelength the amount of transverse-wave energy is
very small, but with small reflectors the scattered waves of each type have compar-
able amplitudes but quite different directivities, see Fig. 5.8 according to Harumi
[519].

With decreasing diameters the small side lobes disappear for both types, the
longitudinal echo approaching a spherical shape whereas the transverse wave exhi-
bits two distinct side lobes. From the angle of these lobes to the axis the diameter
of the reflector can be evaluated.

(CN))]
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a b [

Fig. 5.8. Scattered longitudinal (full lines) and transverse (dotted lines) waves from a small
circular-disc reflector in a longitudinal wave field. a Diameter 24; b 4; ¢ 4/2

The sound pressure of the scattered wave according to [441] is directly propor-
tional to the third power of the reflector diameter and inversely to the square of the
wavelength. Therefore very small reflectors cannot in practice be detected with cer-
tainty even by using more sensitivity and higher frequencies.

For the evaluation of natural defects it is of interest to know how far their shape
differs from a circular-disc reflector. Some information can be obtained from mea-
surements at two different frequencies: Eq. (5.3) gives for the frequencies f; and f,
the ratio of the echo amplitudes

H\/H,=f %/f %
for equal reference echoes from the calibration plate. If this relationship turns out
to be fairly exactly satisfied, we can conclude that the shape of the natural defect
does not differ too much from a flat disc lying perpendicular to the beam. Also
when using the DGS diagram a flat disc-like defect should appear to be nearly of
the same size S for two separate probes differing in frequency and/or size.

We mentioned above that the intermediate range of the DGS diagram cannot
be fully calculated by simple mathematics but the full calculation has been done by
Mundry and Wiistenberg [1086], and in [224]. The exact back-wall echo in this
range has been calculated by Seki, Granato and Truell [1398] and special DGS dia-
grams for normal and angle probes (for both longitudinal and transverse waves)
have been calculated by Kimura et al [785], see also [S 78].

Standard reflector shapes other than circular discs. It is of great interest to know the
reflection characteristics of those reflector shapes which can be readily made for ex-
perimental work in an easy and reproducible manner. examples being spheres, cyl-
inders and strips. The following table gives details of the dependence of the echo
height on the diameter or width, d, the distance z and the wavelength 4 according
to [276].

Reflector Dimensions at right angles to the beam
surface
small/small large/small large/large
flat circular disc strip back-wall
d?/(A2z?) d/(A¥22372) 1/(Az)
curved sphere cylinder

d/(Az?) \/E/(Azm)
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The cylindrical borehole is much favored as a reference reflector because it is
easily and reproducibly made. Its bore diameter d., can easily be related to the
equivalent circular disc diameter dg;, by:

ddisc =0.67 v A v dcy|z

which is valid as long as z>0.7N and d.; > 1.54. For other reflectors see also
[S47].

As well as making measurements using such artifical defects with longitudinal
and transverse wave, Rayleigh and plate wave measurements have been made on
saw cuts.

Strictly speaking DGS diagrams may be established for any wave mode and for
any type of reference defect, but it should be kept in mind that they will never have
a general validity for all probes regardless of their diameter and frequency, and of
the distance of the reflector. Only for cylindrical reflectors perpendicular to the
beam axis can such a normalized generalisation, within certain limits, be made, cf.
[1346]. For further information on DGS diagrams see [405, 408, 1657, 1525, 856,
409, 1427, 1692}.

5.3 Shadow of a Reflector

The propagation of a wave is not only disturbed by an obstacle in producing a re-
flected wave, but also in its shadow. Because we are usually dealing with defects not
much larger than the wavelength, we have to expect diffraction phenomena in the
shadow too.

To calculate the disturbed sound field behind the reflector we can consider the
following propositions. The shadow field will be built up from the undisturbed ori-
ginal field and from interference by a disturbing wave propagating from the rear of
the reflector. In the case of a flat, circular, thin disc the characteristics of the inter-
fering wave are easily recognised because the overall excitation on the rear wall
must be zero. In this area of full shadow therefore the undisturbed wave and the in-
terfering wave must cancel each other completely. Thus the interfering wave must
have the amplitude of the primary wave over the whole reflector area, but with the
opposite phase, so that it is in fact the well-known piston oscillator wave of Fig.4.19
travelling in the same direction as and coaxial with the primary wave. As examples

d .
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- Fig.5.9. Sound-pressure directivity behind a reflector placed at a
distance of six near-field lengths (compare with Fig.4.21)
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Figs. 5.9 and 5.10 show respectively the resultant sound pressure directivity, and the
pressure amplitude, along the axis, calculated on the assumption that the primary
field is a plane wave or in the very distant far-field of a transmitter.

Both figures show the pressure values as they would be measured by a very
small microphone but in practice we have to use receivers of larger dimensions
which average out the pressure values. The final receiver voltage depends therefore
on many parameters and the shadow method can only be used for defect sizing with
great reservation.

If it is not possible to work with a plane wave, or in the very distant field of a
transmitter, the distances and diameters of transmitter and receiver have also to be
taken into account thus preventing the establishment of a diagram of general valid-
ity, as the DGS diagram is for echo sounding. It is already clear from Figs. 5.9 and
5.10 that the pressure amplitude in the shadow region may be higher than the un-
disturbed value, as a result of wave physics. The practical application of the sound-
transmission method, which was the first one used for defect detection and evalua-
tion, can therefore only be recommended for defects large compared with the
distances and diameters of the transmitter and receiver.

Figure 5.11 shows measured values in water for the special case in which the
disturbed wave is reflected back to the transmitter by a back-wall, so being dis-
turbed a second time on the return journey.

The main handicap in using this method for evaluating defect size is the fact
that the position of the defect must be known to apply it so that echo sounding is
much more advantageous.

kN ——
0|2 —
» afi/‘f(lé 16 d/dg=2.6
8 // //
30, ! /
0 ‘L Fig. 5.11. Decrease of the back-wall echo by obsta-
gg cles of circular-disc shape in water as function of

(/] 7 ) 5 § N 1 the position between transmitter and back wall at
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5.4 Circular-Disc Reflectors in Oblique Positions
and Natural Defects

According to Fig.5.12 the directions of both the echo and the shadow wave of an
obliquely oriented reflector are determined by applying Huygens’ principle. This
shows a wave front of the incident plane wave which has just reached the more dis-
tant edge of the circular disc. Elementary spherical waves have radiated from both
the front and the back of the disc forming the echo wave and the shadow wave, re-
spectively. It is clear that the shadow wave must have the same direction as the in-
cident wave, while in the case of the echo wave, as in geometric optics, the angle of
reflection equals the angle of incidence.

At moderately oblique orientations of the flaw, the form of both waves does not
differ greatly from that produced by a flaw orientated at right angles. In Fig.5.13
both waves have been calculated for their directivities in an elementary manner,
that is without consideration of mode changes or edge waves. We know that an ex-
clusive longitudinal reflected wave appears only at very small incident angles, but
the shadow wave is always of the same type as the incident one. For larger angles of
incidence, besides the longitudinal reflected wave we also obtain a transverse wave
at its own angle (cf. Fig. 2.7) with a sharper directivity in accordance with its shorter
wavelength.

Circular disc

-
Incident {” Shadow wave
. ‘
plane wave
- Fig. 5.12. Directions of echo wave and shadow wave
e

of an obliquely oriented flaw plotted according to
Huygens’ principle

Fig.5.13. Echo wave and shadow wave
of an obliquely oriented circular-disc
flaw; directivities of sound pressure cal-
culated for D/A =4
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Figure 5.13 has been calculated for a reflector diameter of four wavelengths so
that in this case we only receive at the transmitter radiation from the faint side
lobes which is in practice blurred and partially hidden by the edge waves. It is
therefore just possible to receive an indication of a reflector in this way but no indi-
cation of its size.

If the geometry of the specimen allows one can, in this difficult case, consider
the influence of the reflector on the back-wall echo but with all the reservations
dealt with in Section 5.3.

To be able to evaluate the size of a reflector lying in an unknown position and orientation
one would have to use a separate receiver and to vary little by little the positions and directiv-
ity angles of both probes until the maximum reflected signal was received. To do this manu-
ally would be extremely tedious and difficult, even by an immersion technique. It would per-
haps be feasible by using a computer-aided mechanical scanning device.

By using the usual scanning technique, with one transmitter/receiver probe applied at
normal incidence one can obtain the best echo possible, but from this it will not be possible to
evaluate either the size or the position with accuracy. For the position it is necessary that the
directivity axes of both the probe and the reflector coincide. By using a probe with a higher
frequency, and hence with a sharper directivity, one can at least try to bring the axes into
somewhat better coincidence and from this fact arises the usual recommendation to use lower
frequencies in the rapid scanning for defects and subsequently higher ones for localizing
them. However, for applying the DGS technique one should keep in mind that the result ob-
tained with a lower frequency probe is likely to be nearer the true size.

In some cases the position of a defect and the geometry of the specimen allow
the use of special techniques such as those illustrated in Fig. 5.14. For these so-
called pitch and catch techniques, when using obliquely incident transverse waves,
DGS diagrams have also been established [1350].

In practice, the oblique position of such a flaw does not affect the echo wave as
adversely as it might be expected for the following reasons.

Firstly, in the case of short pulses, the secondary lobe region is blurred, giving a
more or less even decrease of the sound pressure with the angle.

Secondly, in the case of flaws which are no longer large compared with the
wavelength, the angular distributions of the echo wave and the shadow wave can no

[7Y
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Fig. 5.14. Detection of flaws by oblique transverse waves
with separate transmitting and receiving probes. Method
b b is called a tandem or pitch and catch technique
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longer be given separately as in Fig. 5.13 but they merge to form a connected, scat-
tered wave. With decreasing ratio of diameter to wavelength this scattered wave be-
comes more nearly spherical in form (cf. Fig. 5.8) so that finally for small flaws, the
influence of the oblique orientation disappears altogether but it should be remem-
bered that the sound pressure also becomes very small and high sensitivities are re-
quired to detect them.

For oblique reflectors the edge waves produced are very important since they
give, at least, an indication of a defect (Section 2.7). Their amplitude depends on
the sharpness of the edges and the angular directivity of the scattered waves. A
rounded reflector is much less favorable than one with a sharp edge profile. Of
course a transmitter/receiver can only receive waves of the same type as it transmits
but there are techniques which use a different type of receiver probe to pick up the
scattered wave of the other type (A technique: see Section 19.3).

With a regular shaped oblique reflector, such as a disc or a strip, the edge waves
scattered from the nearer and the further edges, as seen from the probe, have differ-
ent transit times and this allows an evaluation of the width or diameter especially
when using very short pulses. The amplitude of the edge waves received depend on
the length of the edge from which the Huygens’ wavelets can combine at the re-
ceiver without large phase differences. A reflector with very irregular edges will
rarely give useful edge-wave echoes (see Section 19.3).

Natural-defect reflectors differ in several ways from the artificial reflectors used
in the theoretical considerations above. Their shapes are not regular nor are their
surfaces smooth and plane. Therefore when considering natural defects it is usually
not possible to differentiate between the specularly reflected and the scattered
waves and they always mutually interfere. This fact explains the fluctuations of echo
amplitude arising from small variations of the probe position.

Natural defects are sometimes semi-transparent to ultrasound but it appears to
happen in steel less frequently than in aluminium because of the differing proper-
ties of the oxides usually associated with cracks. If cracks are air filled they may
also be so tight, for example by external pressure, to become partially transparent
to ultrasound.

Wavy surfaces militate against the generation of a strong specular reflection,
but surface roughness adversely affects the reflectivity only if it is greater than
about one tenth of a wavelength.

Reflection of a wave may also be adversely affected if the mechanical properties
of the material of the defect, along with any inclusions it may contain, varies only
gradually and not at a sharp boundary (i.e. compared to the wavelength). Porosity
in castings may also act like such a strong absorber and it may be detected only by
its shadowing effect on the back-wall echo.

Regularly uneven surfaces, as for example with milling grooves deeper than a
quarter wavelength, may generate strong sideways reflections in the same way as an
optical grating behaves. Because this interference phenomenon depends on the
pulse length, using a shorter pulse may help to avoid this effect. See also [1654 and
276].

The main task of this chapter has been to evaluate the characteristics of an ob-
stacle from its interference with the sound field, but it cannot be considered as
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completed in a general sense. However, the reverse task of calculating the disturbed
sound field produced by a given obstacle and including its echo received by a
probe, can be solved to a certain extent by the finite-element method, if the obsta-
cles shape can be expressed analytically. Up to now only two-dimensional fields,
i.e. cross sections through three-dimensional sound fields have been treated
(cf.[S 100] and Fig. 4.14). However, by using quick computers the whole field will in
future be calculated within reasonable time. Of course in this calculation the com-
prehensive theory of sound has to be applied, including all wave types and mode
changes. Solutions of the above mentioned main task can be expected for reflectors
of a relatively simple shape.



6 Attenuation of Ultrasonic Waves in Solids

6.1 Absorption and Scattering

So far, ideal materials have been assumed in which the sound pressure is reduced
only by virtue of the spreading of the wave. A plane wave would thus show no re-
duction whatever of the sound pressure along its path, and a spherical wave, or the
sound beam of a probe in its far-field, would merely decrease inversely with the dis-
tance from the source. Natural materials, however, all produce a more or less pro-
nounced effect which further weakens the sound. This results from two basic
causes, viz. scattering, and true absorption, which are both combined in the term
attenuation (sometimes also called extinction).

The scattering results from the fact that the material is not strictly homogene-
ous. It contains boundaries at which the acoustic impedance changes abruptly be-
cause two materials of different density or sound velocity meet at these interfaces.
Such inhomogeneities may either be foreign inclusions, or gas pores. They may be
genuine flaws of the material concerned, or also natural or intentional flaws such as
porosity in sintered materials. There are also materials which by their nature are in-
homogeneous, for example cast iron, in which an agglomeration of elastically com-
pletely different ferrite and graphite grains occurs. In other alloyed materials crys-
tallites of different structure and composition are mixed, as in brass and steel. Even
when only a single type of crystal is present, the material may still be inhomogene-.
ous for ultrasonic waves if the grains are orientated at random and the crystal con-
cerned has different elastic properties and different sound velocities in different di-
rections. In this case it is called anisotropic. In most common metals elastic
anisotropy is the rule, but in different metals it manifests itself to a varying degree.

In a material with very coarse grains of a size comparable to the wavelength the
scatter can be visualised geometrically. At an oblique boundary the wave is split
into various reflected and transmitted wave types. This process repeats itself for
each wave at the next grain boundary. Thus the original sound beam is constantly
divided into partial waves which along their long and complex paths are gradually
converted into heat because of the always present true absorption (see below).

In the frequency range used for testing materials the grain size is usually
smaller than the wavelength and under these conditions scatter occurs instead of
geometric division, as when the light of a headlamp is scattered by the small water
droplets in fog. In the case of grain sizes of 1/1000th to 1/100th of the wavelength,
scatter is for all practical purposes negligible. It increases very rapidly however, ap-
proximately as the third power of the grain size, to make itself felt at sizes from
1/10th to the full value of the wavelength, to such an extent that testing may be-
come impossible if the material concerned is anisotropic.
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The second cause of the attenuation, viz. true absorption, is a direct conversion
of sound energy into heat, for which several processes can be responsible [19, 21,
940], discussion of which would fall outside the scope of this book. Absorption can
roughly be visualized as a sort of braking effect of the oscillations of the particles,
which also makes it clear why a rapid oscillation loses more energy than a slow os-
cillation, the absorption usually increasing with the frequency, but at a rate much
slower than the scattering.

Both losses set practical limitations to the testing of materials, but in slightly
different ways. Pure absorption weakens the transmitted energy and the echoes
from both the flaw and the back wall. To counteract this effect the transmitter vol-
tage and the amplification can be increased, or the lower absorption at lower fre-
quencies can be exploited. Much more awkward, however, is the scattering because
in the echo method it not only reduces the height of the echo from both the flaw
and the back wall but in addition produces numerous echoes with different transit
times, the so-called grass, in which the true echoes may get lost. The scattering can
be compared with the effect of fog in which the driver of an automobile is blinded
by his own headlights and is unable to see clearly. This disturbance cannot be
counteracted by stepping up the transmitter voltage or the amplification because
the grass increases simultaneously. The only remedy is to use lower frequencies,
which due to the reduced beaming effect of the sound and the increasing length of
the waves and of the pulses sets a natural and insuperable limit to the detectability
of small flaws.

The sound pressure of a plane wave, which decreases only as a result of attenua-
tion, can for the purpose of calculation be written in the form of an exponential
function

p=poe™ ©.1)

Do and p are the sound pressures at the beginning and the end, respectively, of a
section of length d and with the attenuation coefficient c.

In literature the attenuation coefficient « is sometimes referred not to the
sound pressure but to the intensity. If the latter is called ¢; the attenuation law of
intensity can be written

I= Io e_"‘ld.
Since the intensity is proportional to the square of the sound pressure we obtain:

e—oqd - e—lazd,
therefore

o= 2u.
The natural logarithm of Eq. (6.1) gives

od =122 (6.2)
14

This is the attenuation proper, or the total attenuation over the distance d, a dimen-
sionless number which is expressed in nepers (Np). The attenuation coefficient can
therefore be given in Np/cm. Following the practice in electrical measurement,
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however, another unit is being given preference, viz. the decibel per metre, abbrevi-
ated dB/m. The decibel measure is obtained if in Eq. (6.2) the logarithm to base 10
is used and multiplied by 20:

ad =120 lg% dB. (6.2a)

In what follows, « will always be given in the unit decibel per metre (dB/m) be-
cause in the frequency range of interest, and the materials in question, the numeri-
cal values, which usually lie between one and a few hundreds, can be memorised
more easily. For instance, various materials with low attenuation have values from
1.0 to 4.0 dB/m.

According to Bergmann [2] water at 20°C has an absorption for 4 MHz of
3,5 dB/m. The frequency dependence is given by

a=0.22f*dB/m with f expressed in MHz.

The influence of the temperature is negative, the absorption decreasing by 3.2 % per
degree at 20°C. At high ultrasonic powers, as can occur in the pulses of a flaw de-
tector, the absorption can be much higher as a consequence of non-linear stressing
and the onset of cavitation.

If the attenuation coefficient of a given material is 1 dB/mm, the wave is attenuated by a
1-mm-thick layer by approx. 10%; by a 20-mm layer by approx. 90 %; at 100 mm the attenu-

ation is the Sth power of 10 and the sound pressure is 107, This would already be a very se-
vere attenuation.

Table 6.1 facilitates the conversion of dB values to ordinary figures. The second
column applies to negative dB values and gives the attenuated amplitude in %: the
third column applies to positive values and gives the gain.

Table 6.1.
dB Attenuated Gain dB Attenuated Gain

amplitude amplitude

in % in %
0.0 100 1.00 10.0 32 3.16
0.5 94.5 1.06 12.0 25 3.98
1.0 89 1.12 14.0 20 5.01
1.5 84 1.19 16.0 15.8 6.31
2.0 79 1.26 18.0 12.6 7.94
2.5 75 1.33 20.0 10.0 10.00
3.0 71 141 30.0 3.2 31.62
3.5 67 1.50 40.0 1.0 100.00
4.0 63 1.59 50.0 0.32 316.23
4.5 60 1.68 60.0 0.10 1000.00
5.0 56 1.78 70.0 0.032 3162.30
6.0 50 2.00 80.0 0.010 10000.00
7.0 45 2.24 90.0 0.003 31623.00
8.0 40 2.51 100.0 0.001 100000.00
9.0 35 2.82
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Intermediate values are obtained by adding the dB values and multiplying the
ordinary numerical values.

Example. A decrease of the amplitude by 23 dB = 20 + 3 dB corresponds to 10 % of
71% = 7.1% amplitude, requiring a gain factor of 10.0 X 1.41 = 14.1.

A table of attenuation coefficients for various materials would be of doubtful
value. Where values have already been reliably measured, which is difficult below
10 dB/m (see Section 33.3), such values, in the case of metals, depend within wide
limits on the various manufacturing parameters (see Section 6.2). Table 6.2, there-
fore, provides only general information.

For a few values of ¢ from 1 to 300 dB/m, Diagram 10 in the Appendix shows
the decrease of the sound pressure of a plane wave as a function of the distance in
the form of a graph. It shows the attenuation in dB, or that of the amplitude in per
cent, if the pulse-echo method is used, i.e. the height of the echo. If the decrease of
the amplitude to 0.1 % is defined arbitrarily as the range, Diagram 10 indicates for
light metals and fine-grained steel (« = 1 to 3 dB/m) transmission ranges above 5 m
when using the echo method, but for grey cast iron (order of magnitude of o ap-
prox. 300) only 100 mm. This presentation draws attention to the fact—which in
practice is frequently overlooked —that the attenuation increases very rapidly with

Table 6.2. Attenuation of longitudinal waves at 2 MHz and room temperature in various
materials

Attenuation Low Medium High
coefficient up to 10 10 to 100 above 100
in dB/m

Material Cast: aluminium, mag- Predominantly absorption

nesium, pure and

slightly alloyed
Worked: steel, alumi-
nium, magnesium,
nickel, silver, tita-
nium, tungsten (all
pure and alloyed)
Non-metals: glass,

Plastics

(polystyrene, perspex,
rubber, PVC,
synthetic resins)

Plastics and rubber,
with fillers, vulcan-
ized rubber, wood

Predominantly scattering

Cast aluminium and
magnesium, alloyed

Cast steel, slightly al-
loyed, high-quality
cast iron

Worked: copper, zinc,
brass, bronze, lead,
stellite, sintered me-
tals

Cast steel, highly al-
loyed, lowstrength
cast iron, cast cop-
per, zinc, brass,
bronze

Non-metals: porous
ceramics, rocks

porcelain
Max. thickness 1tol0m
that can be
tested

0.1tolm

0 to 0.1 m, may fre-
quently no longer be
tested
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the thickness of the layer concerned. While, for instance, 20 mm grey cast iron can
still be tested with 25 % of the echo height in a good quality steel, and which reduc-
tion can easily be compensated by the gain control, an echo in the same material,
but 100 mm thick, has dropped to 0.1%. This is a value which depending on the
transmitter voltage, the design of the probe and the gain may prevent testing. If by
increased gain it is nevertheless possible to increase this back-wall echo from the
100 mm thickness to the same value obtained from a thickness of 20 mm, the mate-
rial at the distance of 20 mm is subjected to a sound pressure 250 times greater than
previously, resulting in excessively large indications from boundaries and small
flaws in the close range. This is erroneously referred to as increased scattering, al-
though compared with the test at 20 mm thickness nothing has changed. Where
there is high attenuation in a given test piece, a comparison of flaw echo and back-
wall echo may therefore lead to completely false conclusions.

In view of the fact that at greater layer thicknesses one usually has to work in
the far-field of the probe, additional allowance has to be made for the decrease of
the amplitude due to the divergence of the beam. According to Eq. (4.6) the sound
pressure at distance d from the probe can therefore be written

N
P=Dpom = e 6.3)

A numerical example will make it clear that both causes of the decrease follow es-
sentially different distance laws, so that the range will in the one case be deter-
mined more by the divergence of the beam and in the other by the attenuation.

Let the sound pressure at a distance of 100 mm be set arbitrarily at 100 %. The
sound pressure then is in percentage terms:

At a distance of 100 mm 1m 10 m
Due to the divergence of the beam alone: 100 10 1
Due to the attenuation alone at
o= 1dB/m 100 90 32
10 dB/m 100 35 0.001
100 dB/m 100 0.003 —

Since the two contributing factors have to be multiplied by each other, the div-
ergence of the beam determines the range in the case of materials which can readily
be penetrated (fine-grained steel and aluminium at 2 MHz), whereas in the case of
higher attenuation this is the predominating factor.

Generally transverse waves are attenuated more strongly than longitudinal
waves, particularly in plastics. Contrary to the assumption frequently heard in prac-
tice, it is not possible to determine the attenuation coefficient of sound for trans-
verse waves by measuring the attenuation coefficient for longitudinal waves at
double the frequency. The elastic resistance of the material exerted against a
change in position of the particles (as in the case of transverse waves) is quite dif-
ferent from that against a change in volume (as in the case of longitudinal waves).
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The attenuation usually increases with the temperature, particularly in plastics.
In the case of steel a maximum appears at the transition point from body-centred-
cubic to face-centred-cubic iron (approx. 721 °C) [1168, 1533].

Beyond this point (in the austenitic range) it increases again very strongly as
reported in [S 113].

In the case of surface waves, plate waves and rod waves the weakening influence
of the roughness of the guiding surfaces must be added; this can be nominally
taken into account by adding a certain quantity to &, and in this case also the de-
crease of the amplitude follows an exponential law.

If an attempt is made to avoid the attenuation of the material by using lower
frequencies when trying to detect small flaws, a compromise has to be made; there
is an optimum frequency, because the effect of the flaw on the sound field de-
creases simultaneously. For instance, in the case of a spherical flaw whose diameter
D is much smaller than the wavelength, the echo amplitude according to Rayleigh [32]
varies by the ratio

D3/A%.

If the dependence of the attenuation coefficient on the frequency is known from
measurements and can be expressed, say by the formula

a=p+taqf”

where p, ¢ and m are constants, one obtains according to Malecki [819] for a given
flaw distance d the optimum frequency

1
mgqd ’

fopt= m

6.2* Attenuation in Metals; Anisotropy and Cast Structure

In view of the fact that the attenuation, particularly the scattering in the material, is
one of the main difficulties encountered in ultrasonic testing and is often the only
factor limiting its application, it is of great practical importance to be able to esti-
mate the influence of the crystal structure on the attenuation. So far no general so-
lution has yet been found because both theoretical and measuring difficulties are
encountered, and because indubitably, in addition to the directly measurable quan-
tities such as grain size and anisotropy, many other parameters which are difficult
to determine have an effect. There are for instance the nature of the grain bounda-
ries and the internal stresses. Frequently, however, not even the grain size can be
clearly defined, as demonstrated by micro sections of steels with their complex
structures.

A clear and logical law of behaviour can therefore be expected only in the case
of simple structures with only one type and form of crystal and a minimum of im-
purities. This needs not necessarily apply to pure metals since alloys with mixed
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crystals are no exceptions in this respect. In such cases the influences of anisotropy
and grain size which can readily be interpreted are observed. If for instance two
samples of cast aluminium and cast brass of identical grain size are compared, the
attenuation in brass is much greater than in aluminium. Further, if two samples of
the same material but of different grain size are tested it is found that the change of
the attenuation due to grain size is much more pronounced in brass than in alumi-
nium. This last-mentioned comparison can also be made with shorter wavelengths
instead of larger grain sizes. A greater ratio of grain diameter to wavelength is thus
accompanied by an attenuation which is the greater, the greater the anisotropy.

According to Roth [1301] a number of important materials can be classified ac-
cording to increasing anisotropy:

W Mg AI-Cu Al Fe Ag Cu Pb o-brass p-brass
O5+5%) (72Cu +28Zn) (58Cu+427Zn)

The coarser grain produces a disturbance which is the greater, the further to the
right the material appears in the above series.

According to Roth, and also Mason and McSkimin [992, 993], the anisotropy
can also be specified numerically, but this will not be discussed here, especially
since the sequences are not identical for different concepts. In the case of trans-
verse waves permutations within the series may result.

Tungsten should be completely isotropic like non-crystalline materials, for ex-
ample glass. Tests on samples, however, are usually hampered by porosity intro-
duced during manufacture.

The low attenuation of the pure light metals and aluminium copper alloys with
only a few per cent copper has been confirmed. As far as the testing of materials is
concerned here the grain size is immaterial.

After iron come the strongly anisotropic materials of which the copper alloy me-
tals in particular cause many difficulties. As far as is known p-brass is the most
strongly anisotropic material after austenite.

Iron is considered here only alloyed with carbon and with other metals in the
form of steel. The influence of the grain size is considerable, and this is the main
reason why, essentially, only frequencies below S MHz should be used when testing
steel. .

In the case of steel the structure is usually not a simple one and does not have
only one approximately uniform grain size and one type of crystal. It is, therefore,
not surprising that the results are as yet unclear. As a first approximation the largest
dimension of grain groupings or domains should replace the actual individual grain
sizes. In relation to the behavior of Austenite see Sections 27 and 28.1.6.

Most materials show a particularly pronounced reduction of the attenuation of
sound if their cast structure is destroyed by working, cold or hot, for example dur-
ing forging, rolling, extruding, etc. To a small extent this effect may be the result of
true compaction of the structure by a reduction of the pore volume. In the main,
however, the deformation process leads to a destruction of the larger grains of the
cast structure, resulting in reduced scattering.

The reduction of the pore volume is usually indicated directly by an increase of
the specific gravity; for example cast copper has a specific gravity of 8.3 to 8.9 but
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this changes to 8.9 to 9.0 if hammered. Since porosity reduces the velocity of sound

the compacting should manifest itself by an increase of the sound velocity.

The effect of the working on the attenuation of the sound is particularly pro-
nounced in the case of non-ferrous metals as well as high-alloyed steels. While in
the as-cast structure even small thicknesses can frequently not be penetrated, they
can readily be penetrated even after the first pass during rolling. Particularly dis-
turbing in such materials therefore is a zone in the finished piece in which the cast
structure has not yet been sufficiently compacted because of insufficient deforma-
tion. A special condition of crystallization, for example an austenitic structure, has
apparently no great significance in itself, but it is important to know whether this
condition is present in the cast structure or the worked structure. For instance, the
material of rolled austenitic pipes can readily be penetrated, while an austenitic
weld joining them usually shows bad transmission because of its cast structure.

It may be mentioned briefly that the improved mechanical properties of centri-
fugal casting as compared with chill castings, sand castings or continuous castings,
immediately manifest themselves in their ultrasonic behaviour. The centrifugal
casting shows better ultrasonic transmittance and is therefore easier to test. It is de-
batable whether this is merely an effect of the finer grain or of a simultaneously
changed condition of the grain boundaries. This has been observed not only in cast
iron but also in non-ferrous metals {1453].

Generally the attenuation along the sound path is connected with the disper-
sion of the velocities, depending on the properties of the material and its structure.
Based on this effect a new method has been developed to evaluate the structure
from the scattering of sound at the boundaries of the grains and the different solid
phases of the material [S 165, S 72-75].

Regarding further theoretical relationships between attenuation, dispersion, fre-
quency, grain size, scattering and anisotropy see also [992, 32, 1627, 1676, 581, 582,
434, 532, 535, 631, and 13, p. 112f].

Measurements are reported in [130, 992, 993, 19] on aluminium, magnesium,
nickel and brass, metals of simple structure and well defined grain size. They con-
firm qualitatively the theoretical approach. Measurements on steel are given in
[1276, 940, 1161, 88, 21, 433].

Regarding measurement techniques see Section 33.3. The main difficulty, in
addition to the measurement technique itself, consists in keeping constant all the
numerous extraneous variables within a series of samples except for the one under
review.

For the practical purpose of non-destructive testing the results can be summar-
ized by rule of thumb as follows:

1. The scattering produced by a given material increases rapidly with increasing
grain size, or decreasing wavelength, if the grain size is about 1/10 of the wave-
length or greater. However, the effect becomes disturbing only if the material
appears far to the right in the anisotropic series.

2. In complex metallurgical structures the grain size should be defined as the max-
imum structural dimension which occurs.

3. A cast structure produces stronger attenuation than a deformed structure, even
in the case of identical grain sizes.
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4. By making a recourse to lower frequencies the attenuation can be reduced con-
siderably, but this step is promising only if the smallest flaws to be detected are
still large compared with the grain size, or the.factor of reflection of the flaws is
large compared with the scatter factor of the structure.

According to newer concepts true absorption in crystals is explained by energy-consuming
oscillations of dislocations in the lattice as well as by reciprocal actions on the lattice itself.
(cf. Read [1241], see also Mason’s book [21, 19] with further bibliographic references). This
theory also explains the increase in attenuation if the material is stressed by tension or com-
pression, as well as the fatigue behaviour of materials (see Section 33.3 and reports by Truell
et al. [658, 559, 1535, 1536)).



7 Piezo-electric Methods of Generation
and Reception of Ultrasonic Waves

7.1 Piezo-electric Materials and their Properties

So far we have discussed the propagation and behaviour of ultrasonic waves in var-
ious materials without pre-supposing anything regarding their generation except
that they are excited in the material concerned by the contact face of a radiator
which oscillates with the desired wave-form and frequency. For detection a micro-
phone has been assumed which likewise has a contact face and which is capable of
measuring the sound pressure of an incident wave. Both devices are referred to in
materials testing as a probe, or transducer, and where applicable as a transmitting
probe or a receiving probe. We shall now discuss its mode of operation, which is
based almost exlusively on the piezoelectric effect. Other methods for generating
ultrasonics are discussed in Chapter 8.

A piezo-electric material has the property that if it is deformed by external me-
chanical pressure electric charges are produced on its surface. This effect was dis-
covered in 1880 by the brothers Curie. The reverse phenomenon, according to
which such a material, if placed between two electrodes, changes its form when an
electric potential is applied, was discovered soon afterwards (in 1881). The first in
called the direct piezo-electric effect, and the second the inverse piezo-electric ef-
fect. The first is now used for measuring, the second for producing mechanical pres-
sures, deformations and oscillations.

Later fundamental research has shown that piezo-electricity is based on a pro-
perty of the elementary cell of the crystalline structure of the material, which is in
this connection the smallest individual symmetrical unit which when multiplied
builds up the whole macroscopic crystal. An essential condition for the effect is
that the crystal cell should have no centre of symmetry and from the total 32 classes
of crystals no less than 21 have this property. Of these 20 crystal types show some
piezo-electric properties and there are therefore many different piezo-electric mate-
rials. However, only very few of them are useful for our purpose and their descrip-
tion will follow later.

In what follows the piezo-electric effect will be explained using barium titanate
as an example since it is a material frequently used in ultrasonics and has a rather
simple structure for the elementary cell (Fig.7.1). Fuller treatments of the subject
may be found in the books of Bergmann [2], Hueter and Bolt [11], Mason [20],
Cady [5] and Jaffe, Cook and Jaffe [12].

Barium titanate, along with many other piezo-electric ceramics, has the struc-
ture of Perowskit, a calcium titanium trioxide (CaTiO;), which can be used as a
general designation of the crystal structure. The elementary cell (Fig.7.1), above a
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Fig.7.1. Elementary cell of barium titanate (schematic)
Fig.7.2. Perowskit structure, tetragonally distorted

certain temperature called the Curie or transformation temperature, has a cubic
structure. Below this temperature it is distorted and strained in the direction of the
socalled C-axis and hence the distances between positively and negatively charged
ions are varied (Fig. 7.2). The shift is only a few percent of the length of the cube
edge but nevertheless it causes a separation of the effective centerpoints of the elec-
tric charges and thus generates a dipole moment . For reasons of energy all these di-
pole moments belonging to neighbouring cells turn in the same direction within
certain crystal domains. Such materials with this property are called ferro-electric
which is analogous to the better known ferro-magnetic property.

The direction of polarization of the different domains within a polycrystalline
material is randomly distributed, and therefore in a sintered ceramic no piezo-elec-
tric effect can be found macroscopically. However, by polarizing the material with
an applied strong electric field at a temperature just below the Curie point, a un-
iform polarization can be achieved for the whole sample. This polarization is “fro-
zen” by cooling down the sample with the electric field still applied. Subsequent re-
heating will again reduce the ferro-electric properties, and to a greater extent the
nearer we approach the Curie temperature, the single polarized domains lose
their orientation statistically. Above this temperature no uni-directional polariza-
tion is possible because at this point the simple cubic structure of the elementary
cell does not have a permanent dipole moment.

When mechanical stresses are applied to a polarized plate of barium titanate,
with compression or tension in the direction of polarization, all the elementary
cells are deformed thus shifting the centrepoints of the structural electric charge
distribution and causing thereby electric charges of the surfaces of the plate. For
easier processing of the charges both faces of the plate are coated with a metallic
layer, these layers forming an electric capacitor in which the crystal acts as the die-
lectric. On stressing this plate we can detect and measure the charges as a voltage
between the layers, which is proportional to the applied stress. Of course, because
of the incomplete insulation of the circuit, the charge falls to zero in the form of a
current pulse. When the applied stress is removed we then measure a voltage, or a
current pulse, of the opposite sign.
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So we can see that the alternating stresses as applied to such a plate by an inci-
dent sound wave, generate alternating voltages and their corresponding currents,
causing the plate to act as a microphone.

The very thin metal coating does not hinder the operation of the so-called direct
piezo-electric effect and the system therefore provides a receiver for ultrasound.
The reciprocal effect forms the basis for an acoustic transmitter in which alternat-
ing voltages applied across the two metal electrodes cause the plate to oscillate at
the frequency of the voltage. If one attempts to prevent the increase or decrease of
the plate thickness, it develops compression or tension thereby transmitting a pres-
sure wave into the contiguous medium, its amplitude being proportional to the ap-
plied voltage.

However, the deformation of the piezo-electric plate is not only restricted to an
alteration of its thickness. As a result of the elastic properties of any solid material
any variation of the thickness must always be associated with opposite dimensional
variations in the other two coordinates. The extent of this internal coupling de-
pends on the particular crystallographic structure and as an example the size varia-
tions in a rectangular plate, cut in the so-called X-direction from a natural quartz
crystal, (see also this book, 3rd edition, p. 120), are shown in Fig.7.3.

Natural quartz was formerly widely used in the probes for ultrasonic materials
testing but it is now generally replaced by more sensitive piezo-ceramics (see
Table 7.1).

In fact these few illustrated additional variations in the dimensions of a piezo-
electric plate subjected to applied electric potentials are not by any means the only
ones. A full description and explanation would require a great deal of the theory of
elasticity, but for the generation and reception of longitudinal waves the more com-
plex variations do not interfere very much, so we may here restrict ourselves to the
variation of the dimensions perpendicular to the thickness as shown in Fig. 7.3b for
the Y-direction.

With a plate cut from a crystal such as quartz variations in both the Y- and Z-
directions, have different couplings with the thickness variation whereas ceramics

+ - _ +
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b Fig.7.3. Deformation of an
X-cut quartz plate of dimen-
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such as barium titanate do not. As a consequence the shape of a circular disc cut
from quartz is somewhat distorted when energised whereas a disc made from bar-
ium titanate only changes its diameter when oscillating. When rigidly attached to a
solid material both transmit a weak shear wave, and a surface wave, besides the nor-
mal longitudinal wave (Fig. 7.4). When using a liquid coupling, however, the shear
wave cannot be transferred. The surface (Rayleigh) wave is unavoidable however,
and can be used intentionally for surface testing, but otherwise it may interfere with
longitudinal wave testing by giving unwanted echoes.

The Y-expansion is sometimes made use of for generating low frequency longi-
tudinal waves, which are transmitted from the small X-Z area, since the natural fre-
quency of the plate in this direction is much lower than in the thickness direction
(see Section 7.2). It is also an advantage that the radiating contact faces do not have
metal electrodes which always suffer from abrasion when in contact with a solid
specimen.

Figure 7.5 shows an example of the use of the internal mechanical cross coup-
ling to generate strong transverse waves. A rectangular rod of piezo-ceramic mate-
rial, with a high cross-coupling factor (see Table 7.1), has been polarized perpen-
dicular to its main axis. It can then be cut into square plates without destroying
the piezo-electric properties. Each plate of thickness d, and metallized on the large
faces (XZ), can oscillate at the natural frequency corresponding to its thickness,
and radiates a transverse wave in the Y-direction when coupled to a solid medium.

As already mentioned in Section 4.8a piezo-electric plate never oscillates ex-
actly like a piston because of the fringe-field effect. The voltage between the elec-
trodes is in fact uniform over the whole plate, but the electric field strength is actu-
ally responsible for the amplitude of the piezo-electric effect. Because at the edges
of the plate the field lines tend to curve outwards, the oscillation amplitude is here
reduced with unavoidable influences on the ultrasonic field (see Fig.4.44).
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The following basic laws of piezo-electricity are valid for both types of piezo-
electric materials. That is the piezo-ceramics which get their piezo-electric proper-
ties by being polarized in an electric field at elevated temperatures, and the mono-
crystalline materials having natural piezo-electricity, such as quartz.

For the following treatment we assume the ideal case of a simple parallel sided
oscillator with only thickness deformations. The static case of the twin piezo-elec-
tric effects may be written in an elementary manner as follows:

1. Let the applied potential be U, (the transmitting voltage). The change of
thickness Ax; will then be

Ax, = dy; U, (1.1

where d,; is the piezo-electric modulus.
In the case of piezo-ceramics the direction of polarization is normally identified by
the index 3 and a typical value for barium titanate is:

d3;;=125%X1072m/V (or As/N).

If an oscillator is to be used only as a transmitter a value of the piezo-electric mod-
ulus as high as possible is an advantage.

2. Consider now an externally produced change of thickness Ax, (receiver). The
corresponding open circuit potential, that is the voltage across the oscillator with-
out applied load, is:

Ur = hggAxr (72)

where hs; is the piezo-electric deformation constant.
Its value for barium titanate is:

hi; =1.5X10°V/m (or N/As)

but for other crystals the axis and the value of the constant will of course be differ-
ent.

3. In the latter case one can also start from the pressure p,, which produces the
change in thickness. The voltage produced by the receiver crystal then depends ad-
ditionally on the thickness d:

U, = g33dp, (7.2a)

where g;; is the piezo-electric pressure constant.
It is for barium titanate:

g3 =14x 10 Vm/N (or m*/As)

A value for gs; as high as possible is an advantage when mechanical pressure is to
be transformed into a voltage, as for example in a receiver for ultrasound.

Assuming that the total change in thickness of the transmitter is transferred to
the receiving crystal so that Ax, = Ax, then the ratio of receiver voltage to transmit-
ter voltage, according to Egs. (7.1) and (7.2) and using values for barium titanate,
will be

U/U, = dyshyy = k2, = 0.19. (1.3)
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The quantity k, defined by this equation (7.3), is the electro-mechanical coupling fac-
tor which for a piezo-electric material is an indicator of the efficiency of the con-
version of an electric voltage into a mechanical displacement or vice versa. For the
values above for barium titanate we would get back about 20 % of the input voltage.
The value of k = 0.43 for barium titanate is, however, only valid for rods excited in
their axial direction. For thin plates a cross coupling between thickness and trans-
verse oscillations cannot be neglected. The value of k; (thickness oscillation) for
barium titanate taking this into account, is:

k=033 ie. k=011

which means that only 11 % will be obtained. The abolute maximum is about 25 %
(k, = 0.5, see Table 7.1).

For the thickness oscillation of thin plates also the factor k;, (for radial oscilla-
tions) is of importance since from k, the disturbing oscillations of a probe depend.
It should therefore be as small as possible compared with k,. The higher the value
of k, the more an oscillator differs from the ideal case, assumed above, for a pure
thickness oscillator.

In addition to the various piezo-electric constants, its mechanical quality Q as
well as its impedance Z is of importance in considering its performance as an oscil-
lator (cf. Section 7.2).

The mechanical quality Q is a measure of the increase in amplitude if a plate
is vibrating at its resonance point as part of an oscillating circuit. It is higher when
the oscillation losses of energy in the material are lower. With materials of natural
crystalline origin such as quartz it is normally very high and its value cannot be in-
fluenced. With ceramic materials it can be varied by making use of small changes
in the chemical composition, and available commercial products have mechanical
qualities between 15 and 1000 (see Table 7.1).

The acoustic impedance, or sound resistance, Z defined as the product of den-
sity ¢ and sound velocity ¢, determines the passage of sound between two differ-
ent materials (Section 2.1). For equal impedances the whole sound energy is trans-
ferred between two materials and it is therefore better to make an optimum match
between the impedance of the transmitter/receiver and the specimen material un-
der test.

For generating and receiving ultrasound in materials testing today piezo-elec-
tric ceramics are mostly in use, the commonest being barium titanate, lead zirco-
nate titanate (PZT), lead titanate (PT), lead meta-niobate (PbNb,0O¢) and barium
sodium niobate (Ba,NaNb;O,;5). The properties of these materials can be varied by
manufacturing processes within certain limits. Table 7.1 lists values for two typical
PZT ceramics (Sonox P2 and P35) as well as for barium titanate (Sonox P1) and
lead meta niobate (K-81).

Instead of directly sintering the powder for the manufacture of ceramic transducers it can
be mixed with an electrically non-conductive liquid to make a paste and with an applied high-
bias voltage it develops piezo-electric properties (Lutsch [955], cf. also [237]). Such paste
transducers can be applied directly to the specimen without using a coupling fluid. On rough

surfaces they give better coupling but have much lower sensitivity than standard types of
transducer. It is of interest that they may be used even at temperatures higher than the Curie
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temperature if higher boiling point liquids are used [955). In addition one may mix the pow-
der material with mouldable hardening resins and produce rigid transducers with low sensitiv-
ity but high internal damping.

Pizeo-electric monocrystals such as quartz, lithium sulfate, lithium niobate,
lithium tantalate, zinc oxide and iodic acid are rarely used today for materials test-
ing. The reason for not using quartz, the oldest known piezo material, is the low
sensitivity, k, = 0.1. For some special cases lithium sulfate and lithium niobate
have certain advantages and their constants are mentioned in Table 7.1. Only for
the sake of completeness we also mention Seignette or Rochelle salt (potassium so-
dium tartrate, KNT crystal), potassium phosphate (KDP), ammonium phosphate
(ADP), potassium tartrate (DKT), ethylene diamine tartrate (EDT) and tourmaline.

Finally in Table 7.1 we mention polyvinyliden fluoride (PVDF). This is a plastic
film used mainly in the packaging industry and its piezo-electric properties have
been detected only since 1969 (Kawai [763], Sussner et al. [1489], Ohigashi [1140],
Sussner [1488]). Thin films of PVDF in the range 0.1 to 0.005 mm thickness can be
polarized by a high voltage after being stretched and in this case molecular chains in
the plastic material are aligned rather than being randomly distributed as normally.

When comparing the values given in Table 7.1 one sees from the piezo-electric
modulus d, that the first four materials listed give far higher thickness variations
than the others and are therefore better suited for use as transmitters at the same
transmitter voltage. PZT is the best and the two mentioned PZT types differ mainly
in their dielectric constants and their mechanical quality. Type P2 has a very low
dielectric constant (&, = 480) compared with P35 (g, = 1600). It is reasonable to se-
lect a PZT material which at a given probe diameter allows proper matching of its
capacity to the input impedance of the amplifier. The high value of g;; recommends
PVDF as receiver.

In the case of PZT and barium titanate, the high sensitivity cannot in practice
be fully exploited because of their high acoustic impedance. Not only for transmit-
ting into liquids, but also for liquid coupling to solids, the effective impedance is
only a few X 10° Ns/m?. Lead meta-niobate, lithium sulfate and PVDF are in this
respect much more favorable.

Another point in favor of lead meta-niobate is the mechanical quality Q which
should be as low as possible for the damping of the fundamental oscillations of a
plate. In order to obtain short pulses a backing material is usually bonded to the
rear face of the crystal both for damping it and for absorbing the penetrating wave.
It must be rigid enough to support the crystal but thin enough to maintain the
transducer at a handy size. For material with high impedance the compromise may
not be easy, and therefore lithium sulfate and lead meta-niobate are preferred. The
latter has also a very low Q and may in some cases be used without even a special
backing material, which is an advantage for the working sensitivity.

Another important advantage of lithium sulfate and lead meta-niobate is their
small coupling factors between co-planar oscillations and thickness oscillations,
which is responsible for long-lasting reverberations following a short pulse. Piezo-
electric ceramics have radially symmetrical decay oscillations within the plane of
the disc and damping by a rear-mounted damping block is only partially effective.
A better solution, but one presenting difficulties for the probe construction, is to
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use an additional edge damping material around the disc. For this reason barium ti-
tanate is not suited for use with very short pulses when compared to lithium sulfate
and lead niobate. However, there is another disadvantage of the latter materials
which arises from their high sound velocity. This means that discs must be of very
small thickness at high frequencies causing them to be rather fragile [S50].

Lithium sulfate is water soluble and, for immersion testing, must be protected
by water-tight covering layers, usually of cold-hardening resins which can also be
used for matching the coupling impedances. When provided with curved surfaces
they can even be used to focus the beam when radiating into water, or for matching
the profile of a curved surface of the specimen. However, if they are used for con-
tact with solid specimens the plastic surface is easily damaged and the crystal can
be destroyed by water so that the surface is usually protected for such applications
by a further layer.

The high transformation temperature of lead niobate (1210 °C) allows its use on a
hot surface, for example to inspect parts of sodium-cooled nuclear reactors, but the
crystal has to be protected against oxidation above 650 °C by an air-tight enclosure
(Podgorski [1199)).

Electrical matching of the probe to the amplifier becomes difficult at high fre-
quencies for large crystal diameters because of their high self-capacity. In this case
the low dielectric constants &, of lithium sulfate and lithium niobate are an advan-
tage compared with piezo-ceramics.

Finally PDVF has very unusual values and in spite of its very low coupling fac-
tor (k, = 0.12) it is an interesting material because of its low impedance, low me-
chanical quality and low dielectric constant. It is suited therefore for high fre-
quency oscillators, having high damping even without backing. Its main advantage,
however, is its film character which can be produced at a thickness for which other
materials would be extremely fragile. PVDF can be used for transducers working up
to 100 MHz, which is only possible with solid transducer materials by exciting them
at an harmonic oscillation, as for example the fifth harmonic of a 20-MHz oscilla-
tor.

7.2 The Piezo-electric Plate as Transmitter and Receiver
of Ultrasound

The above descriptions of the behavior of a piezo-electric plate are strictly valid
only for the static case, or as long as the thickness variations only take place so
slowly that the inertia of the plate can be neglected. Any plate, regardless of its
piezo-electric properties, can oscillate mechanically like the classic system of a
mass and spring. The fact that within a plate the mass and the spring’s elastic force
are uniformly distributed enables it to oscillate at its fundamental frequency, and
also at its various harmonics, as in the case of a taut string.

Let us consider the fundamental or first harmonic oscillation in a plate rigidly
fixed at its edges as in Fig.7.6. The material particles of the two surfaces oscillate
simultaneously, either outwards or inwards, but within the median plane the parti-
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cles are always at rest. If the displacement of the particles at a series of instants 0 to
8 are plotted at right angles to the axis of the plate, as shown in Fig. 7.6, the result is
a group of sinusoidal curves having different amplitudes. This phenomenon is well
known to us and constitutes a standing wave as explained in Fig.1.5. It can be
thought of as consisting of two waves running in opposite directions through the
plate, but at the same frequency. Therefore the thickness oscillation of a plate can
be described by a plane wave which is reflected at the first surface with opposite
phase (because it is the boundary with an acoustically soft medium), and being re-
flected again at the opposite surface, once more with a phase reversal. Thus it un-
dergoes a phase shift equal to a full wavelength, and so meets itself in phase.

Using a sound velocity for longitudinal waves ¢ in the plate material, its thick-
ness d equals

d=5=7> (7.4)

and hence the characteristic or natural or fundamental frequency of the plate is

= :
fo= 2d" (1.5)

A thickness oscillation may also be achieved by transverse waves. For each case,
using values for barium titanate (type P2) ceramic, we obtain:

fm =2.60/d MHz »

7.6
fo = 0.98/d MHz (7.6)

with the thickness expressed in millimetres.
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Fig. 7.6. Fundamental thickness oscillation of a plate. Displacement of the particles plotted at
equal time intervals, 0 to 8, perpendicular to the axis of the plate

Fig.7.7. Higher harmonics of a plate. Particle displacement at time zero as in Fig. 7.6.
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To produce sound in the audible range with thickness oscillations in a barium-
titanate plate, a thickness of 200 mm would be needed, but using thickness of a few
millimetres we attain the frequency range of ultrasound needed for testing materi-
als.

Figure 7.7 explains the formation of higher characteristic oscillations, the so-
called harmonics. Standing waves will also occur for waves of shorter wavelength,
provided they are an exact fraction of the fundamental wave. In these cases two,
three or more half-wavelengths fit into the plate thickness so that there are several
nodal plains where the particles are always at rest. The corresponding harmonic fre-
quencies are an integral multiple of the characteristic or first harmonic frequency
Jo- For the odd harmonics, as well as for the fundamental, viz. at fy, 3f, 5f; etc., the
particles in the two surfaces are subjected to opposing oscillations simultaneously,
so that the thickness of the plate varies in the rythm of the oscillation. In the case
of even harmonics, viz. 2f;, 4f;, etc., the particles oscillate simultaneously but in
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the same direction so that the thickness of the plate remains unchanged. From an
outside viewpoint it merely oscillates back and forth as a whole.

Mechanical excitation, for example by a physical shock, can produce in a plate
higher characteristic vibrations in addition to the fundamental, as well as bending
vibrations, resulting overall in a rather complex oscillation. However, thanks to the
piezo-electric effect it can be excited electrically in its fundamental characteristic
oscillation by applying to its metallized surfaces an alternating voltage correspond-
ing to its characteristic frequency.

If a shock-excited plate is allowed to oscillate freely, its sinusoidal oscillation
does not remain constant because the plate constantly loses energy by two mechan-
isms, viz. internal friction and energy convection in the form of ultrasonic waves
transmitted to the mounting and the surrounding material. The first cause is
usually insignificant compared with the second which is the real purpose of the os-
cillator. Due to the loss of energy the oscillation is damped and the amplitude de-
creases from one oscillation to the next by the factor b known as the damping coef-
ficient (Fig.7.8). As will be explained later, this quantity depends essentially on the
material to which the plate is coupled. In the case of the damped oscillation the fre-
quency is in practice that of the characteristic frequency of the oscillation without
damping. Only for high values of damping are the frequency deviations appreci-
able.

If the piezo-electric plate is excited by an alternating voltage of a frequency dif-
ferent from its fundamental, it will oscillate at this applied frequency, after initial
build-up, as a forced oscillation with constant amplitude. The amplitude achieved
depends on the exciting frequency (Fig.7.9) and for very small frequencies it is
practically identical to the static thickness change of Eq.(7.1), which is arbitrarily
taken to be 1 in Fig.7.9. Up to the resonance frequency f; it increases to a maxi-
mum value which depends on the coefficient of damping, after which it falls again.

At the resonance frequency f, the plate is excited to the largest amplitudes. This
frequency usually differs somewhat from the characteristic frequency f, which is the
frequency of the free-oscillating plate, whether damped or not.

This increase at resonance is equal to the quality Q and is defined as the ratio of
the amplitude at the resonance frequency (not the characteristic frequency) to the

static thickness change:
AXfr

Q N Axstat ' (77)

The quality is linked to the damping coefficient b:
Q=-"—(Inb=2.303 Igb 7.8
™ 303 Igb). 78)

The quality is linked also to the band width of the resonance curve. If the band
width B of the resonance maximum is defined according to Fig. 7.9, and measured

at 70% (more accurately at 1/J2- =0.707) of the maximum value, the following
equation applies if the damping is not excessive, i.e. for Q-values above say 10:

B= (7.9)

ol
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N - Fig.7.10. Radiator between two materials 1 and 2

Formulas (7.8) and (7.9) should be regarded only as approximations because their deriva-
tion presupposes that the oscillating piezoelectric plate behaves like a mass suspended by a
spring However, this is only approximately so, because, particularly in the case of high damp-
ing, the deviations are considerable. In the testing of materials by means of sound pulses
damping coefficients of this order are necessary, so that when calculating the resonance am-
plitude and the band width, considerably more complex, exact calculations should be used
[1302}.

When using a piezo-electric plate as an ultrasonic generator, the relation be-
tween the damping coefficient and the constants of the contiguous materials is of
interest. Let it be assumed that the plate is located between two materials 1 and 2
with the acoustic impedances Z, and Z, (Z = oc) (Fig.7.10). As long as Z, and Z,
are both smaller thanZ,, the acoustic impedance of the piezo-electric material, i.e.
for sonically soft coupling on both sides, the following applies:

_ (2ot Z)(Zy+ Z))

Y - Z)(Zo- 2

(7.10)

(For derivation of equations see [1302].)

Equation (7.10) is also valid if both contiguous materials are sonically harder
than the piezo-electric material. If, however, one of the two materials is sonically
softer while the other is sonically harder, the piezo-electric plate oscillates only at
A/4 resonance, i.e. the characteristic frequency of the plate damped in this way is
only half as high as given by Eq. (7.5), and the damping coefficient in this case is:

_(Zo+ Z))* (Zy + Z)
(Zo~ Z1)2 (Z— 22)2 ’

Example. Let it be assumed that a quartz plate is mounted so that one side borders on air and
the other on water. From the values Z, = 0.4 X 103, Z, = 1.5 X 10°, and Z, = 15.2 X 10° Ns/m’
it follows that b = 1.22 (Fig. 7.8a). This quartz is now cemented at the back to vulcanized rub-
ber. From Z; = 2.8 X 10° we get d = 1.75 (Fig. 7.8 b). This applies not only to a plate of 1 MHz,
but according to Eq.(7.10) the damping coefficient is independent of the resonance fre-
quency. If, however, we now let the quartz cemented to vulcanized rubber radiate into alumi-
nium instead of water, so that Z, = 16.9 X 10, the resonance frequency of the plate is now
only half as high. To facilitate the comparison Figs. 7.8 and 7.9 however, have been drawn as
if a plate of half thickness were used for this test. In this case the damping coefficient
should be calculated according to Eq. (7.11); this gives d = 730, i.e. in this case the plate is al-
ready damped almost aperiodically because the amplitude of the second oscillation is now
only 1/730 of that of the first and the third only 1/730% = 1/533 000. For practical applications
it must, however, be taken into consideration that a thin layer of cement between crystal and
aluminium reduces the effective acoustic impedance of the material so that invariably smaller
damping values will be obtained in tests.

In practice, the coupling conditions of a probe may fluctuate considerably with the sur-
face quality, surface shape and material of the test piece, and therefore also the damping. In
order to reduce excessively large fluctuations the unchanged acoustic impedance Z, of the

b

(7.11)
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damping body cemented to the back can be chosen high. However, this can be done only at
the expense of sensitivity because the oscillation-amplitude, and therefore also the amplitude
of the radiated sound, decrease with increasing damping factor.

So far the fundamental oscillation of a piezo-electrically excited plate has been
discussed. The harmonics will now be analysed and for this purpose we assume that
also in this case the plate is on both sides in contact with sonically soft materials. It
is found that only the odd harmonics can be excited piezo-electrically, i.e. after the
first resonance f;, further resonances occur at 3f;, 5f;, etc. Figure 7.9 should be sup-
plemented on the right towards the region of higher frequencies by these additional
resonance peaks. The correlated damping factors increase with the order of the har-
monic, i.e. they are proportional to 3, 5, etc. Therefore, at constant exciting voltage,
the amplitude of the radiated sound wave decreases at the same rate.

Even if the resonance curve shown in Fig. 7.9 is supplemented by the resonance peaks of
the harmonics, it still differs from any measured curves because every quartz plate always has

additional resonance peaks produced by additional deformations, linked to the thickness os-
cillation, which have been neglected here.

As far as the testing of materials is concerned, the oscillation amplitude of the
piezo-electric plate is less important than the sound pressure of the radiated sound
wave. The sound pressure is proportional to the oscillation amplitude and the fre-
quency, so that at frequency 0 the resonance curve starts at zero and not with a fi-
nite value as shown in Fig. 7.9. Further, the resonance peak is symmetrical about its
resonance frequency. Only in the case where the piezo-electric plate borders on the
one side on a sonically hard material and on the other on a sonically soft material,
is the resonance peak shifted from the above-mentioned 4/4 point towards higher
frequencies and becomes asymmetrical.

Conversely, if a similar plate is used as receiver, the no-load voltage produced at
the plate (i.e. without the load of measuring instruments) is proportional to the am-
plitude of the oscillation. Therefore, this receiving voltage of the piezo-electric
plate again has an asymmetrical form as shown in Fig.7.9.

If similar plates are used as transmitter and receiver (or, as in the echo method,
the same plate is used first as transmitter and then as receiver) and if we consider
the ratio of receiving voltage (no-load voltage) to transmitting voltage, the fre-
quency curve with its resonance peak has to be considered twice. Figure 7.11 shows
curves of this type calculated according to [1302]. It should be mentioned here that
electrical matching of the receiver plate of an amplifer can deform the curves con-
siderably. In calculating the curves shown in Fig. 7.11 it was assumed that no loss of
sound pressure occurs between transmitter and receiver as a result of the conditions
of propagation.

It should be pointed out that the ratio of receiving no-load voltage to transmit-
ting voltage is independent of the size and thickness of the piezo-electric plate. Fi-
gure 7.11 is therefore valid for all sizes of oscillator and the size of the plate influ-
ences only the conditions of sound propagation (beam spread, length of near-field).

The sound field of a piezo-electric plate used as transmitter has been discussed
in Sections 4.1 and 4.3. It should be added that if the piezo-electric plate is used as
receiver it has the same field of sensitivity. According to a general principle, viz.
the reciprocity theorem, the transmitter characteristic equals the receiver character-
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flfy — has been assumed

istic. As far as the far-field is concerned this means for instance that an incident
wave of constant sound pressure but variable angle of incidence produces in the re-
ceiving crystal a voltage which reaches a maximum at perpendicular incidence,
and which decreases in the case of oblique incidence according to a characteristic
as shown in Figs. 4.15.

In the echo method where the radiator functions both as transmitter and re-
ceiver, the directional characteristic in the far-field therefore enters twice as a fac-
tor. The same applies to the near-field. The ratio of receiving to transmitting vol-
tage is therefore determined in the case of a small reflector movable in the sound
field, by the square of the functions described in Chapter 4 exclusively for the
sound field of the transmitter. The characteristic consequently becomes more
pointed.

7.3* The Piezo-electric Transducer with Pulse Excitation

Let us first answer the question as to why a low damping of a given piezo-electric
plate is not always advantageous. In order to radiate a continuous sound wave at
the maximum possible sound pressure and a given frequency, it is logical to excite
a suitable plate at its natural frequency and to keep its damping at a minimum. For
this purpose it is advantageous to let it be damped only by the coupled material
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while it borders on air at the back. In non-destructive testing this is rarely the case,
because even if continuous ultrasonic sound is used for the test it will usually be
necessary to sweep the frequency to avoid the creation of standing waves in the test
piece. In this shifting of frequency the amplitude should remain as constant as pos-
sible which, however, a narraw resonance curve does not permit. Ideal would be a
frequency curve with a partially flat region, which, however, is difficult to achieve if
one does not want to operate with very small amplitudes at frequencies far from the
resonance point. A compromise is then made and the resonance curve is broadened
as required by introducing suitable damping, resulting in the band not being com-
pletely smooth but decreasing to only 70 % of the maximum value at its limits.

An adequate band width is particularly important when transmitting short
pulses. In the echo method the length of the pulse may prevent the detection of
flaws near the surface and pulses of minimum duration are therefore desirable. At
high frequencies these pulses may still consist of a large number of oscillations.
This advantage is, however, offset by the fact that the damping of most materials in-
creases with the frequency. It is therefore necessary to generate and transmit pulses
at frequencies which are not excessively high and with a minimum number of oscil-
lations; it may even be advisable to produce completely aperiodic, i.e. socalled
shock pulses or transients.

Every pulse can be presented in sinusoidal form by a Fourier series as the sum
of a given number of partial oscillations unlimited in time and contained in a fre-
quency band of given width. Before and behind the pulse these partial oscillations
cancel each other exactly. The shorter the pulse, regardless of its shape, the broader
is the frequency band of appreciable amplitude. If some of the frequencies are sup-
pressed in the case of pulse transmission by a mechanical or electrical system, the
transmission distorts the pulse, and in particular lengthens it. The rule applies that
in order to transmit a pulse of duration T without considerable distortion, a fre-
quency band of width B = 1/T is sufficient even if the latter has already decreased
to 70% at both ends, as in the case of the resonance curve shown in Fig.7.9.

A band width of 0.18 MHz shown in Fig.7.9b, therefore, could transmit with
practically no distortion a pulse of 1/0.18 = 5,5 us duration, e.g. S oscillations of
1 MHz frequency, each lasting 1 us. If, however, one attempts to place on such a
piezo-electric plate a pulse of 1 us duration, the corresponding frequency band of
1 MHz is not transmitted, and the transmitted pulse would not be shorter than 5 ps
as already indicated by the decay process of the plate shown in Fig.7.8b.

If a transmission circuit contains several series-connected elements, e.g. transmitting
transducer, receiving transducer and amplifier, the above statement applies to the total trans-
mission curve which is the product of the individual transmission curves. The various ele-
ments, therefore, must match each other and it is futile to connect a wide-band transducer to
a narrow-band amplifier, and vice versa. Also, the material through which the pulse passes in
the form of a sound wave may influence the frequency band, because its damping increases
rapidly at higher frequencies.

Let us consider various types of electrical pulses and investigate how the piezo-
electric plate behaves in these cases. First, let us take an alternating voltage train
with 10 oscillations at the natural frequency of the plate (Fig. 7.12a). At the be-
ginning and end this train suddenly disappears. However, because of its inertia
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Fig.7.12. Excitation of a piezo-electric
plate by an alternating voltage train
with damping coefficients 1.75 and
525, excitation frequency equals natu-
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cillations occurring in the actual plate,
e i.e. the sum of (a) and (b) - (d) transient
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and the elastic forces, the plate tends to resist any sudden changes and smothes
them out at the beginning and at the end of the oscillation by buildup and decay
processes. The actual oscillation of the plate is therefore composed of the motion of
an inertialess plate subjected to the influence of the voltage, which the plate follows
precisely, and the transient oscillations. In Fig.7.12 the curves a and b should
therefore be added, so that the actual oscillation of the plate is obtained in c. Here
again a damping coefficient b = 1.75 was assumed, as in Fig. 7.8 b. The transient os-
cillation is the free characteristic oscillation of the plate, and Fig. 7.12b is therefore
identical with Fig.7.8b; the latter oscillation, however, as a build-up process,
should be taken to be negative because it opposes the electrical excitation. How-
ever, at the end of the pulse, it acts in the same sense, i.e. it tries to support the
electrical excitation.

With higher damping (Figs.7.12d and e for b = 525) the effect of the transient
oscillation is less important and the actual oscillation already resembles the excit-
ing voltage much more closely. It should, however, not be overlooked that the am-
plitude decreases inversely with the damping coefficient; in the illustration this has
not been taken into account.

The build-up of the natural oscillation depends entirely on the impressed conditions, for
which a particularly simple and clear case has been chosen here, viz. appearance and disap-
pearance of the pulse voltage exactly at a maximum. The correlated build-up process always
develops in such a manner that it exactly cancels the motion of an intertialess plate at the be-
ginning.

The shorter the duration of the excitation and the lower the damping of the
plate the greater the proportion of transient oscillations in the pulse. In Fig.7.13a
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Fig.7.13. As in Fig.7.12 but with shorter pulse (corresponding to Figs.7.12a, ¢ and e)

Fig.7.14. Sound-pressure waves, excited by the voltage U as a function of time, along the axis
of a transducer plate sandwiched between two materials 1 and 2. For reasons of simplicity, the
same sound velocity has been assumed in 1 and 2 and the scale chosen so that the pulse width
is the same both in space and in time

pulse of only two oscillations of the characteristic frequency was used for excit-
ation. With b = 1.75 the oscillation of the plate already fails to reach the maximum
value, and build-up and decay already start to overlap. The plate with the greater
damping still transmits the pulse almost undistorted, but with smaller amplitude.
This disadvantage is partially offset by the fact that this plate reaches its oscillation
peak earlier than the less damped plate.

Since short pulses are particularly important in non-destructive testing, the re-
sults of a more rigorous treatment of the piezo-electric plate will now be described,
which makes it possible to construct correctly the pulse of the sound pressure of in-
terest for arbitrary, exciting voltages by using a rather simple and fruitful method
[258, 1246].

Without presenting its derivation, it is recommended that the following, basic
rule concerning piezo-electric plates operated as transmitters be memorized (see
Fig.7.14):

If an arbitrary voltage is applied to a piezo-electric plate, sound-pressure waves
which show the same chronological pattern as the voltage start simultaneously from
both surfaces. They travel into the plate as well as into the materials coupled to it
externally, but inside the plate their phase is opposite to that outside. Their ampli-
tudes depend on the acoustic impedances of the materials concerned as follows:

Material 1 Material 0 Material 2
(Z) (Zo) (Z,)
(Piezo-electric plate)
Z, Zy Zy Z,
Zg+21 Zo+ Zl Zo+Zz Zo+Zz

If the waves inside the piezo-electric plate strike the boundary, the well-known
formulae given in Eq. (2.1) apply for their reflection and transmission, together with
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the rule: phase reversal at reflection on sonically softer material. Further, they
superimpose upon each other without distortion.

It is at this stage already no longer surprising that two waves travel in opposite direction in
the plate, if it is realised that we have come to regard the oscillation of a plate in its funda-
mental and harmonic modes as a standing wave which may be composed of two waves travell-
ing in opposite directions. This concerned the special case of sinusoidal waves, a limitation

which is now discarded. Instead of the square waves in Fig.7.14, any other arbitrary voltage
and wave form may be used.

The above rules will now be applied to various boundary conditions and pulse
forms. First, a short square wave pulse, as in Fig.7.15, will be assumed in a thick
plate so that the delay in the plate exceeds the duration of the pulse. Further, let us
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Fig.7.16. As in Fig.7.15 but with free boundary on the
left and reflection-free matching on the right
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first take the simple case of a reflection-free boundary on both sides, viz.
Z, = Z, = Z,, which can approximately be realised experimentally by a quartz plate
sandwiched between aluminium, resulting in the four waves being identical. The
internal waves pass unimpeded through the opposite faces and completely leave the
piezo-electric plate (Fig.7.15). Thus, outside the plate, two identical, opposing
pulses follow each other at an interval determined by the delay in the plate.

Figure 7.16 shows the case where the plate on the left borders on air. The wave
from the right is totally reflected with phase reversal. In Fig.7.17, however, the
matching on the right is no longer reflection-free, Z,/Z, being chosen 0.25, which
corresponds approximately to quartz/perspex. This results in a sequence of pulses
which follow each other at the delay distance of the plate, Fig. 7.18 showing the first
eight pulses on an enlarged scale. The second pulse is always twice as large as the
first and the later pulses decrease in a constant ratio.

Other terminal conditions, e.g. the sonically hard termination, can be similarly
treated. Here, however, only the length of the square wave voltage will be increased,
again with reflection-free termination on both sides (Fig.7.19). If the duration of
the square wave voltage equals the transit time, the sound pressure has the form of
a square wave oscillation, and if it becomes much longer (or if the piezo-electric
plate is thin) only narrow pulses remain at the beginning and at the end. Between
these pulses, the next wave (from the opposite plate surface) exactly cancels the
first wave because of its reversed sound pressure. In the case of a thin plate, a step
voltage, therefore, produces only one narrow pulse if the plate has reflection-free
termination. If the square wave voltage is replaced by a sinusoidal voltage, only a
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Fig.7.17. As in Fig.7.16 but Fig.7.18. The first 8 pulses of Fig.7.17 shown on en-
with sonically soft matching on larged scale over path x
the right. Z,/Z, = 0.25
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Fig.7.19. Excitation of a reflection-free terminated oscillator by square wave voltages of dif-
ferent duration relative to the transit time in the oscillator. Pulse duration ¢, transit time T. a
t<T;bity=T;cty>T;d t,> T (thin transducer plate)

very low sound pressure remains because two opposing half waves must be added at
only a slight relative time lag.

In the case of excitation by several consecutive pulse voltages it is merely neces-
sary to obtain the result for a single pulse and to add similar results, shifted accord-
ing to the time lag of the pulses, respectively. In this way the sound wave corre-
sponding to a given train of sinusoidal waves can be plotted on the basis of the
result of a sinusoidal half wave and one can thus-determine the build-up and decay
proccesses also in the absence of resonance. In practice this is done by calculation or
graphically.

As far as the receiver is concerned, the following rule applies (Fig.7.20):
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Fig.7.20. Reception of a square wave by a piezo-electric plate matched on both sides. Receiv-
ing voltage U as a function of time for waves of different length. a Pulse duration ¢, < delay T;
b#y=T;ct>T;d ty> T (thin receiver)
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If an arbitrary sonic pressure wave enters a piezo-electric plate, an electric no-
load voltage is produced at its electrodes which is proportional to the area of the
sonic pressure curve of the wave which has already entered. If several waves are
propagated in the plate simultaneously, e.g. by zigzag reflection, their areas are
added with due regard to sign.

The example in Fig. 7.20a shows a square wave which enters a thick plate (dura-
tion of wave shorter than transit time). The area inside the plate (shaded) increases
linearly, and, therefore, also the voltage. It remains constant as long as the whole
wave travels inside the plate. Since it has been assumed that the back of the plate is
matched reflection-free, the wave leaves the plate unimpeded and the voltage,
therefore, again drops to zero.

If the wave is longer, it can fill the plate completely and the voltage reaches a
maximum which persists as long as the plate is filled. Finally, if the wave is very
long compared with the transit time (Fig. 7.20d), it increasingly resembles the vol-
tage curve. Thus, if the back of a piezo-electric plate is matched correctly, and the
thinner the plate, a sound wave can be transformed into a voltage with increasing
faithfulness. In this case, however, the amplitude of the voltage decreases with the
thickness of the plate because the area is reduced.

Within a real crystal the area of the diagrams filled by the wave of course means the vo-
lume.

In practice it is not an easy matter to terminate a piezo-electric plate reflection-
free. If the termination at the back is sonically soft, reflections at this point are pro-
duced with phase reversal. A single, short pulse, therefore, produces an alternating
voltage of decreasing amplitude (Fig.7.21).

If one reverses the polarity of a piezo-electric plate, the transmitted pulse also
reverses its phase, i.e. it starts with a maximum instead of a minimum of sound
pressure or vice versa. If the same plate also serves as receiver the form of the elec-
tric pulse will be the same in both cases. The effect of polarity therefore is only of
influence if different plates are used.

Finally, Fig. 7.22 shows a case of practical interest calculated by the method de-
scribed; this concerns the transmission from an X-cut quartz plate backed by vul-
canized rubber through water, a similar transducer acting as receiver. The exciting
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Fig.7.21. Reception by a piezo-electric plate with sonically soft termination on both sides, left
Zy/Z,=12, right Z,/Z, =9. Receiving voltage U as a function of time
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Fig. 7.22. Transmission of an electric pulse in the form of a damped oscillation with b= 1.75
from transmitter to receiver in resonance at b = 1.75. Transmitting voltage, sound pressure
and receiving voltage as functions of time, maxima arbitrarily shown equally large

voltage, as is frequently done, is the damped oscillation of a resonating circuit with
the characteristic frequency of the plate. Both the resonating circuit and the plate
have the damping coefficient b = 1.75, wherein it is assumed that the plate pro-
duces no reaction on the resonating circuit and the rest of the generator circuit.
This applies approximately to quartz with its small electromechanical coupling.

The example shows how resonance of both the transmitter and the receiver
changes the original pulse. The build-up is flattened and the decay increased con-
siderably. Special attention is drawn to the build-up of the receiving voltage, which
due to the formation of the area integral is always very flat. The considerable distor-
tion of the pulse can be reduced by better damping as well as by off-resonance ex-
citation.

When coupling a transducer to a solid via a thin layer of liquid the problem be-
comes more complex due to the multiple reflections in this layer. Basically it can,
however, also be solved by adding the individual waves according to amplitude and
phase. It turns out that this considerably changes the resonance curve of the trans-
ducer, particularly by the appearance of two peaks.

Finally, the matching of the piezo-electric plate to the electric transmitter will
briefly be discussed. Greatly simplified, a piezo-electric plate of thickness d = /2
excited at its fundamental frequency can be replaced by its static capacitance C; in
parallel with an ohmic resistance R, as long as the plate is not excessively dis-
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Fig.7.23. Equivalent circuit diagram of a piezo-electric plate at resonance (a). If the static
capacitance C, of the plate (including the capacitance of the circuit and the cable) is adjusted
by means of coil L, to electric resonance, only the effective radiation resistance R remains (b)
and (c¢) if other losses are neglected

turbed by contiguous materials (Fig.7.23). This radiation resistance shown in the
equivalent circuit, consumes the same energy as radiated by the plate into the con-
tiguous material. If the capacitance, as is customary, is balanced by an inductance
L, connected in parallel and tuned to resonance, only R, remains. However, it
should also be taken into consideration that by L, also the capacitances of the cable
and the instrument are compensated. If the instrument is changed or the length of
the cable, this may also change the test frequency [126]). If Z, and Z, are the acous-
tic impedances of the materials adjacent to the piezo-electric plate, the acoustic im-
pedance (converted according to [633], where a series circuit was assumed as equiv-
alent circuit) is obtainsd from

1 cNZ,+ 7y h,
R.= Sf2 ( 16h%,62e3 + nAZ, + Zy) Q,

where S (m?) is the area of the radiator, f, (Hz) the resonance frequency of the un-
damped oscillation, and &, = 8.86 X 10712 As/Vm the universal constant. Typical
constants ¢, h;3, & of the piezo-electric material are given in Table 7.1.

Modern transmitter circuits usually have a very low impedance. Therefore elec-
trical matching of a probe is only necessary to the input impedance of the ampli-
fier. If these impedances differ very much, a simple inductance connected in paral-
lel to the input does not suffice and a transformer is necessary. In addition the
probe cable has to be terminated with its cable resistance, at least when using long
cables and high frequencies, so as to avoid interfering reflections in the cable.

Tuning of the electric circuit to equal the mechanical resonance frequency of
the plate will not only improve the sensitivity for the frequency used, but also sup-
presses interfering frequencies. As we have seen a plate excited by a short shock
resonates not only at its fundamental frequency, but also in harmonics and cross
oscillations. These latter are related to the much larger transverse dimensions of the
plate and therefore have much lower frequencies. So resonance tuning also acts as a
filter for unwanted oscillations.



8* Other Methods for Transmitting
and Receiving Ultrasound

As well as the piezo-electric effect, other physical properties can be utilized for gen-
erating and receiving ultrasound. Although many of these produce weaker signals
than are obtainable by the piezo-electric effect, they nevertheless offer a number of
advantages which in special cases make their application in the testing of materials
useful. In the case of many of these effects the energy is transmitted by electrical or
magnetic fields which in principle make mechanical contact with the metallic test
piece unnecessary. The conversion into, or from, acoustic energy takes place in the
surface of the workpiece concerned. Compared with the piezo-electric oscillator,
which is coupled to the workpiece, the surface of the work piece forms in the case of
these “direct” methods a part of the acoustic transducer. The direct or dry methods
thus require no coupling medium, and so avoid some of the difficulties analysed in
the paragraph below.

Wet coupling can introduce various disturbances. Due to the interference of the
waves reflected at the two interfaces, the transmissibility of a liquid layer depends
to a great extent on its thickness, and can approach zero if the couplant thickness
equals a quarter wavelength. Consequently it is necessary to reduce the thickness of
the liquid layer to a minimum and to keep it constant. This is not easy if the testing
is carried out at high speed as in some automated installations. When testing hot
workpieces, the difficulty of finding a suitable couplant increases with the tempera-
ture. Finally, a certain amount of wear due to abrasion is unavoidable in all cases
where the probes come into mechanical contact with the workpiece.

An ideal method would allow doing without coupling liquid and operate at an
appreciable distance from the surface, so that the uncertainties of coupling to the
surface could be avoided, as well as wear and tear. In addition such a method could
be used on hot surfaces and minimise the problem of protecting the probe from ex-
cessive heat.

A further advantage of the direct methods results from the fact that there are no
mechanically oscillating components in an electro-acoustic transducer since such
components have a natural frequency which influences the overall frequency re-
sponse. For this reason the direct methods are more suitable for applications where
a resonance-free frequency range is important, for example, for shock waves.

The use of effects other than piezo-electricity for the acoustic transformation
may also prove advantageous for a quite different reason. If different effects are
used for transmitting and receiving the sound, it will be much easier to protect the
receiver from direct cross-coupling.

For instance, if in a given test system an electro magnetic transmitter is used in
conjunction with an electro static receiving system, the receiver does not react to
the magnetic field of the transmitter if the set-up is correct. Consequently, an out-
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put signal can be produced only by acoustic pulses coming from the workpiece con-
cerned. Here, a receiver using an induction coil would be unsuitable because in
practice it is impossible to decouple magnetically the transmitting and the receiv-
ing coil.

In the following all possible physical effects suitable for transmitting and receiv-
ing ultrasound for the testing of materials will be discussed and the probes which
utilize these effects will be analysed.

8.1 Mechanical Effects

The direct mechanical generation of sound, although not contactless, requires no
coupling liquid. Sound can be produced in a body by mechanical shock or friction.
This phenomenon, well known in the audible range, produces a wide frequency
spectrum with portions in the megahertz range. The spectrum depends on the
shape, size and material of the objects exposed to the shock. All types of waves are
generated, most effectively in the range from 100 kHz to 1 MHz. Therefore are such
methods can be used for testing concrete, cast iron and similar materials. When
testing concrete (cf. Section 32.5) electromechanical hammers are used as transmit-
ters. For the excitation in glued honeycomb structures rotating wire brushes have
also been used [593].

For reception the effect of the sound radiation pressure in liquids (see Section
1.3) can be exploited. A receiver which uses this principle and which has found
some application is the Pohlman cell [2]. However, compared with the conventional
probes, it requires considerable sound amplitudes and a long response time (see
Section 13.9).

Pressure-sensitive liquid crystals also permit the reception of sound since their
optical activity (rotating the plane of polarization of transmitted light) is pressure
sensitive.

8.2 Thermal Effects and Laser Techniques
for the Generation of Ultrasound

By heating the surface of a body suddenly (“heat shock”) the thermal expansion of
the material produces mechanical stresses and these initiate sound waves. If the
heating is of very short duration (lasting approx. 10 ns), very high frequencies and
shock waves can be produced. This requires the thickness of the heated layer to be
small compared with the wavelength of the sound [552, 1749, 1616]. All kinds of
sound waves are generated.

The required energy is beamed onto the surface of the object concerned and
this can be realized in two ways:

1. By electromagnetic waves (microwaves, infrared, visible and ultraviolet light);
2. By corpuscular radiation (electron beams)



8.1 Mechanical Effects 143

19200 ~ 10 ps = Fig. 8.1. Shapes of light pulses for excit-
ation of sound pulses. a Nd-YAG-laser;
a b b mode-coupled Nd-YAG-laser
80
dB
70 /r’ =
60 /

B
g ]
< /
§ 40— / i
§30 7
P vl
10— /
4
7 Fig.8.2. Sound amplitude as function of
107 107 10! 1 J 70  the laser energy per pulse for a light wave-

Energy of laser length of 1.06 um

The subsequent conversion into heat is effected in several stages which accord-
ing to [1572] differ for wave and corpuscular radiation.

The sound pulse closely corresponds to the shape of the light pulse and by using
an appropriate type of laser one may influence the Fourier spectrum of the sound
pulse by the narrowness of the light pulse [1387]. In the range 1 to 30 MHz, which is
useful for testing materials, suitable laser pulses are shown in Fig. 8.1. For higher
frequencies up to 100 MHz one can use pulses in accordance with Fig. 8.1b.

The relation between the generated sound amplitude and the energy of the light
pulse for longitudinal ultrasonic waves is given in Fig.8.2. For low light energies the
relationship is linear but with higher energies a plasma layer is built up on the sur-
face which increases the sound pressure considerably. This range in Fig. 8.2 goes
from 0.3 to 1.0 J, energies commonly used for materials testing. In this range sound
pressures can be reached of the same order as those produced by piezo-electric gen-
erators, and without damaging the surface of the specimen.

Fundamentally, incident light pulses can excite all types of sound wave, but
there are possibilities of exciting certain types preferentially (Fig.8.3). For example
longitudinal waves are generated when the surface is covered by a plasma
(Fig.8.3b).

The reason for this effect is to be found in the recoil forces of the plasma. If it is
required to generate surface waves preferentially a shock must be applied to the sur-
face only over a length small compared to the required wavelength, especially by us-
ing a short rise-time of the light pulse. A directional surface wave is obtained by
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Fig. 8.3. Excitation of ultrasound without (a) and with (b) plasma on the surface

such excitation on narrow parallel lines by using appropriate slotted diaphragms in
the laser beam. ‘

One of the advantages of using laser-pulse excitation is the possibility of using
large operational distances of up to 10 m. A further advantage arises from the fact
that the velocity of light is high compared to that of sound, which means that all
parts of an excited surface area are in practice struck simultaneously. The gen-
erated pulse is therefore independent of the angle of the incident light and hence
also the angular directivity of the generated ultrasonic pulse does not depend on it.
This may however, be influenced by appropriate shaping of the excited surface
area. From a very small area we obtain a point source (see Fig.4.23 in Section 4.4)
but from a larger area high-frequency ultrasound is radiated more directionally and
low-frequency longitudinal waves propagate in a more spherical shape. Within the
large frequency range of a shock wave all this happens simultaneously.

A certain directivity can be obtained by excitation of narrow separated strips
which work for selected sound frequencies as the analogue of an optical grating

Laser radiation

Solid e/ectrnze Isolating foil
/
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Fig. 8.4. Radiation of sound at an Fig. 8.5. Electrostatic transmitter
angle to the surface
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(Fig.8.4). If the strips are separated by the distance d the Huygens’ wavelets add up
in the correct phase at angles for which:

sin =_ni
“=7

(n is an integer, 4 wavelength of ultrasound).

By using Huygens’ principle we can also calculate the angle of an oblique beam
generated by using constant delay times between adjacent strips or for the case in
which a complete excitation pattern is moved along the surface at a certain
speed.

The temperature of the surface has no noticeable influence.

8.3 Electrostatic Methods

Between the plates of a charged capacitor there are attracting electrostatic forces
[28]. This effect may be used for direct excitation of sound in a specimen or for the
construction of a transmitter probe. In the first case an electrode can be held at a
small distance from the surface of a metallic specimen and subjected to an alternat-
ing voltage. The mechanical force on the surface generates an ultrasonic wave at
the same frequency as the voltage [906]. Because the forces are perpendicular to
the surface, longitudinal waves perpendicular to the surface will be preferentially
produced. The resulting amplitudes are usually very small but rather high frequen-
cies and shock waves can be generated by this method.

To build such a-transmitter probe a thin metallic diaphragm is mounted at a
small distance from a solid metallic electrode as in Fig. 8.5. The radiated ultra-
sound can be directed into a liquid or even into solids by using a coupling layer.

The effect can also be used for receiving sound by using it in reverse. The vol-
tage across a capacitor energised by a constant electric potential will change if the
distance between the electrodes is altered [1518].

8.4 Electrodynamic Methods; EMATSs

These methods which are also called magneto-inductive methods, are based on the
so-called Lorentz force. This is the force F which acts on a charge e moving in a
magnetic field of induction B at a velocity v [28, 580]. The following law applies:

F~e-vXB.

Transmitting by Means of a Superimposed Magnetic Field

A coil through which an alternating current flows (i.) is placed on an electrically
conducting body (Fig.8.6) in which an eddy current is induced of density g (deter-
mined by e- v) in the small unit volume dV. In this case the force

F~gXB
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acts on dV. Here attention should be paid to the directions: the vectors g, B and F
are at right angles to each other and g opposes the current i_ in the coil. By choos-
ing the direction of the magnetic flux B one can produce either longitudinal or
transverse waves. If B is oriented parallel to the surface, Fig. 8.6 shows that the
force F is perpendicular to the surface and this results in the generation of longit-
udinal waves.

If B is at right angles to the surface (Fig.8.7), F is oriented parallel to the sur-
face, as indicated in Fig.8.7, and the result is that transverse waves are generated.

The generated sound has the same frequency as the alternating current. The ef-
fect produced concerns a volumetric force and due to the finite penetration depth
of the alternating magnetic field [28] the necessary condition, that the thickness of
the excited layer is small compared with the wavelength of the sound, is fulfilled for
ultrasonic frequencies. (Penetration depth here means the depth in the material at
which the current has decayed by a factor 1/e).

This principle can be utilised for the construction of a transmitting probe by
placing a flat coil on an electrically and magnetically conducting diaphragm and by
orientating the magnetic field as required. Of greater importance, however, are the
direct methods using the same principle.

The probes used are designated EMAT (electromagnetic acoustic transducer) or
sometimes EMT or EMUS. A survey is given in [492], cf. also [S 77].

Figures 8.8 and 8.9 show the construction principle for testing equipment of
this type. The transmitting coil is placed directly on the workpiece which must be
electrically conducting. In the drawing the necessary superimposed magnetic field
is produced by a permanent magnet. However, since this effect is weak, attempts
have been made in practice to increase the efficiency by making the direct field
stronger. Electromagnets including those operating by pulsed excitation [465], and
even super-conducting magnets up to 11 Tesla (11 T = 110 kG) [1585] have been
used.

In the case of the most commonly used flat spiral coils the sound pressure un-
der the centre of the coil has a minimum because the magnetic fields of adjacent
sections of the conductors cancel each other at this point.

In practice the maximum working distance is of the order of 1 mm since with
increasing probe distance the amplitude of the sound pressure decreases along with
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Fig.8.8. Direct magnetic generation Fig.8.9. Direct magnetic generation of
of longitudinal waves in the magnetic transverse waves in the magnetic field B
field B parallel to the surface perpendicular to the surface

both the magnetic field of the AC coil and the DC magnetic field. Due to their dif-
ferent geometries these two fields obey different distance laws and in addition the
inductance of the coil changes with distance. Due to the complex interaction of
these three effects the decrease in amplitude with distance depends to a large ex-
tent on the prevailing test conditions and cannot be expressed by a simple law. For
relevant measurements see for instance [33, 1003] where the dependence of the in-
tensity on the DC magnetic field is discussed.

In both the arrangements illustrated in Figs. 8.8 and 8.9, the sound waves are
preferentially radiated perpendicular to the surface. The directivity of the longitudi-
nal wave produced in Fig. 8.8 is similar to the beam shown in Fig.4.15. The trans-
verse wave produced in Fig. 8.9 has, on the other hand, zero amplitude in its axial
direction and two symmetrical lobes as shown in Fig.4.23. The reason is that its di-
rection of polarisation is parallel to the surface but lies radially from the centre
point of the probe. Attention must be paid to this fact when a reflector has to be lo-
calized (see also [1057]).

The efficiency of the conversion of electrical into acoustic energy is 1073 [580]
for a DC field of 1 Tesla (10 kG). If the sound is also received by an identical device
(see below) the signals are in consequence at least 50 dB [331] to 100 dB [158] be-
low those obtained with conventional probes.

If the surface is excited by several staggered conductors, particular types of wave
and directions of propagation (for example, plate waves, [924]), can be produced
due to interference of the waves produced under the individual conductors.

By spacing the current conductors at distances of 1/4 wavelength of the sound
and by feeding current pulses which are in phase quadrature relative to each other,

preference is given to the radiation of the sound waves in one direction only, see
Fig. 8.10.
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Fig.8.10. Magnetic excitation of plate waves

By such measures it is also possible to reduce the band width of the sound spec-
trum in order to suppress harmonics [924]. For details of the sensitivity, directivity
and the types of wave which can be generated by an EMAT see [1057].

For a theoretical treatment of the directivity see for example [777, 1172]. Fur-
ther experimental results are given in [314, 160, 467, 1746, 1747, 493, 1319, 710,
1068, S 6]. [S109] gives a comprehensive survey on EMATs with many refer-
ences.

Transmitting without a Superimposed Magnetic Field

If the superimposed magnetic field B in the arrangements described above is omit-
ted a force nevertheless acts on dV because the current i_ in the coil has its own
magnetic field and thus produces at dV an induction B_. As shown in Fig.8.11 this
results in the generation of longitudinal waves.

Since in this case B oscillates at the same frequency as i, F always has the
same direction, viz. that of a repelling force between coil and material. The sound
has double the frequency of the current in the coil, since both B_ and g increase
with i_ and F increases in proportion to i . In addition the force depends on the
distance of the coil and the conductance of the material concerned.

As shown above, this effect results from the repelling force between two currents
flowing in parallel directions. The eddy currents induced in the material can also
be replaced by a second coil through which a corresponding current flows. By this
arrangement DC pulses (shock waves) can also be transmitted.
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The magnitude of the force depends only on the numerical value of the product
B- g. In earlier cases B was chosen as large as possible whereas g was kept rela-
tively small. In the method just discussed the current in the coil should be as strong
as possible in order to maximise both B and g, the pulse technique permitting the
application of high currents without overloading the coil. This obviates the use of
large and heavy magnets and simplifies the construction of the probe shown in
Fig.8.12.

According to [375] the sound transmitter consists of a fixed flat spiral coil fac-
ing a copper diaphragm. The strong current pulse is produced by the discharge of a
capacitor and a triggered spark gap in air serves as a switch. This is shown schemati-
cally in Fig.8.12, but in practice, alternative circuits for the formation of the pulse
can be used.

Due to the skin effect and the increased inductance the amplitude decreases
uniformly with increasing frequency. On the other hand, this method can be used
at low frequencies, around 100 kHz, in order to produce considerable sound ampli-
tudes.

Consequently this probe is particularly suitable for testing concrete and similar
materials.

According to experience the effect lends itself also to the direct generation of
sound in conductive specimen. The coil is placed on the work piece concerned and
a strong current pulse is passed through it. Also in the case of this method direc-
tional radiation of a wave is possible by means of a suitable, spatial arrangement of
the conductors and an appropriate phase shift.

Reception

For ultrasound reception a superimposed magnetic field is indispensible and the ar-
rangement is identical to that used for transmission. Various authors have already
described pulse-echo methods using the same arrangement for transmitting and re-
ceiving in an analogous way to the use of a piezo-electric probe. If the unit volume
dV (cf. Fig.8.6 or 8.7) moves in response to a force F in a magnetic field B, an eddy
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current of density g flows which induces a voltage in the applied coil. In a similar
way to sound transmission, the direction of the magnetic field determines whether
longitudinal or transverse waves will be received. The induced voltage has the same
frequency as the mechanical oscillation, and it increases with the magnetic field,
but for fields which can be generated economically, it is smaller than that produced
by piezo-electric probes.

In the direct method the air gap between workpiece and receiver coil should be
kept as small as possible and not greater than about 1 mm. Over a limited range the
decrease of the signal with increasing distance can be compensated by the simul-
taneous inductance increase. This requires that the receiver coil is matched electri-
cally in such a way that its resonance frequency is greater than the sound frequency
when the coil is in contact with the material, so that, if the coil is lifted off, its re-
sonance frequency decreases and approaches that of the sound frequency. This in-
creases the electrical signal and partially compensates the reduction resulting from
the increased distance.

The sensitivity of this method is too low for the detection of small flaws but is
adequate for measuring wall thickness. Another special application, viz. the mea-
surement of the directivity of piezo-electric probes, has been described in [1646],
(cf. also [1711 and 162] and Section 10.5.4).

8.5 Magnetostrictive Methods

Nearly all ferromagnetic materials are deformed mechanically when placed into a
magnetic field. This phenomenon is called magnetostriction [2].

If this deformation of the material occurs at constant volume, it is called linear
magnetostriction but if the volume changes it is volumetric magnetostriction. In
practical applications the linear effect is much stronger than the volumetric effect
but both reach a maximum value at the magnetic saturation of the material con-
cerned. Linear magnetostriction occurs below the Curie point, whereas above this
temperature only volumetric magnetostriction is observed.

Transmitting

In the case of linear magnetostriction the deformation occurs mainly in the direc-
tion of the field. It depends on the magnetostrictive constants of the material which
are in turn complex functions of the temperature, the magnetic state and the previ-
ous treatment of the material concerned.

This effect is independent of the sign of the magnetic field and if an alternating
field is applied it results in the generation of sound of twice the frequency. In the
case of material with an approximately linear magnetostriction curve (deformation
as function of the magnetic field) the working point can be shifted by applying an
additional magnetic DC field H_ >H . in such a way that sound of the same fre-
quency is produced.



8.5 Magnetostrictive Methods 151

Due to the finite depth of penetration of the alternating magnetic field the ef-
fect is limited to the surface of the material. The generation of sound depends also
on the intensity of the alternating magnetic field in the surface layer. Close coup-
ling between the source of the magnetic field and the surface, is therefore essen-
tial.

In practice, magnetostrictive transmitter probes have been utilized already for
the generation of sound of high output at low frequencies (around 100 kHz). For
the excitation it is necessary to magnetize the magnetostrictive body in the direc-
tion of the radiation and as in the case of piezo-electric oscillators, magnetostric-
tive oscillators are operated at their natural mechanical resonance in order to am-
plify the desired effect. Since at 200 kHz the oscillator is still only approx. 1cm
thick in its direction of oscillation, this makes it necessary to magnetize a disc in
the direction of its thickness. In order to keep the losses small at the high frequen-
cies concerned, the oscillators consists of thin sheets, as in the case of transformer
cores, into which holes are punched for the winding (Fig. 8.13).

When testing ferromagnetic materials the magnetostrictive effect can also be
used for the direct excitation method. The efficiency of the electro-acoustic transfor-
mation depends on the magnetostriction parameters. Conversely, the achieved effi-
ciency, i.e. the amplitude of the signal, also permits deductions concerning the
magnetostriction parameters. A suitable working point on the magnetostriction
curve can be reached by superimposing a direct magnetic field. If the amplitude of
the signal is plotted as a function of the direct magnetic field, this furnishes a dif-
ferentiated magnetostriction curve of the material concerned. Curves of this type
depending on the material, may differ greatly. Consequently, a definite form of the
curve is characteristic of a material of definite composition and pretreatment. This
method, therefore, is suitable not only for the detection of flaws and for thickness
measurements, but also for the identification of materials and for tests to prevent
mix-ups [754].

The statement in Section 8.4 concerning the dependence of the sound ampli-
tude on the distance between transmitter coil and surface of the test piece applies
also in this case. Without a superimposed direct field the counteracting effect eli-
minates the influence of the distance of the coil on the amplitude of the sound as
long as the alternating field exceeds that required for the magnetic saturation of the
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Fig.8.13. Assembly of a magnetostrictive
transducer
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Current impulse

Pulse of rod waves

Fig. 8.14. Focussed radiation of plate waves
Fig. 8.15. Magnetostrictive testing of steel rod or wire

material. Exactly as in the case of the magneto-inductive method the preferential
radiation in a given direction is controlled by a suitable geometrical arrangement
and energising of the linear elements of the coil. The coil may be of special design
and thus, for instance, can radiate focussed plate waves. Figure 8.14 shows the
principle of this application.

Also the excitation of rod waves as in Fig. 8.15 becomes understandable.

Reception by Magneto-Elastic Effects

Sound waves are received by magnetostrictive material due to the magneto-elastic
effect, because elastic stresses arising from the sound waves influence the magnetic
properties. In the presence of a magnetic field this changes the density of the mag-
netic flux and induces a voltage in a coil placed on the surface of the material con-
cerned. For reception it is thus necessary to premagnetise the material by means of
an external field. Also in this case it is necessary to shift the working point to the
most favorable (i.e. the steepest) part of the magnetostriction curve. The effect ob-
tained is limited to the surface by the skin effect. The direction of the magnetic
field should coincide with the direction of the elastic stresses produced by the
sound.

It seems feasible to construct magnetostrictive probes by using a suitable mate-
rial (i.e. ferrite) which has been developed for operation in the MHz range but so
far no practical application for routine tests has been reported.

The direct method is however already being applied in the “Ferrotron” instru-
ment, Section 25.1.

Reception due to a Modulated Stray Flux

If the surface of a ferromagnetic material contains a crack, a stray flux appears at
this point if the specimen is magnetised at right angles to the crack. This means that
the lines of force are densest at the crack on the surface. If sound is transmitted
through this specimen which reaches the area around the crack, the stray flux will be
modulated via the magnetoelastic effect at the same frequency as the ultrasound.
This modulated stray flux can be picked up by an induction coil [755].

In the Ferrotron instrument (see Section 25.1) a combination of several direct
magnetostrictive methods is used for detecting flaws in wires. This concerns a com-
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bination of surface waves and rod waves which move spirally around the wire and
which are recorded by means of the magneto-clastic effect as in the case of the
modulated stray flux. Direct magnetostrictive methods, with most materials, give
signals which are stronger than those produced by the magneto-inductive meth-
ods.

8.6 Optical Methods and Laser Techniques

These concern the effects of sound on light waves and consequently, these methods
can be used only for reception. Methods have been developed which evaluate the
spatial distribution of the sound field and which make it visible. They are discussed
in Chapter 13. The subsequent electronic processing requires that the effects are all
converted into an amplitude modulation of the light. This furnishes an electric
signal which can be picked up by a photo-electric cell.

Reception

We start with methods in which the effect of sound deflects the light from its origi-
nal direction or position. If a beam of light impinges on a photoelectric cell of lim-
ited receiving area (case a, Fig. 8.16), this cell will receive less light if the beam is
deflected (case b). The effective receiving area can be limited by a diaphragm, or by
the edge of the cell. The fluctuations cause the photoelectric cell to furnish a corre-
sponding signal. The deflection of the light can be realised in different ways.

If it occurs on the surface of the work piece, this permits the application of di-
rect methods. This possibility will be discussed first.

In the case of a piston-like movement of a reflecting surface an oblique beam of
light is shifted sideways. If the surface is deformed when exposed to sound, this
causes tilting of the surface elements by a small angle. Beams of light reflected
from these surface elements are deflected at twice the tilting angle. In this way Ray-
leigh waves can be made visible [55]. This method presupposes optically reflecting
surfaces.

If rough surfaces are illuminated by laser light the reflected beam consists of
irregularly distributed bright spots in its cross-section, the so-called “speckle pat-
tern”. By movements of the surface these spots fluctate and reception is possible us-
ing a diaphragm and a photo-cell.

In transparent bodies the light is deflected by a sound wave because the index
of refraction varies as function of the pressure (Debye-Sears effect) [2]. A sound

Electr. signal

Photoelectric

cell

Fig.8.16. Amplitude modulation with deflection
of light
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Li=Source of light 1,,L,=Lenses S = Schiiere Fig.8.17. Path of rays in the schlieren-
B = Diaphragm F=FPhotoelectric cell optical system

wave therefore causes zones in which the local index of refraction is different from
its value in the surrounding space.

To detect such zones the schlieren-optical method is used. The basic path of rays
according to [2, 1638] is shown in Fig. 8.17.

A point-like source of light, Li, produces via the lens L, an image on the so-
called schlieren diaphragm B. If this image appears undisturbed, the entire light
from Li through L, is intercepted by B and no light falls on F. If a zone of changed
refractive index (schliere) occurs between L, and B, the light at the edge of the
schliere is deflected by refraction from its original direction and the rays by-passing
B are focussed by lens L, onto the photo-electric cell F where the brightness is pro-
portional to the sound pressure.

If for example an ideal shock wave (a DC wave) passes through the body the wave
front generates a moving layer with a changed refractive index. In the case of a
wave consisting of multiple oscillations the various layers produced act as a moving
optical grating. The spatial structure of the index variations deflects the light into
several orders of diffraction (Fig. 8.18). The dimension of the wave fronts in the di-
rection of the light propagation should be not too large. The grating constant is
equal to the wavelength.

The grating in this case acts as a phase grating. The Huygens’ wavelets scattered
at the extremes of pressure, or refractive index, combine into the different orders of
diffraction in a way similar to an amplitude grating (Raman-Nath diffraction) [307,
935] see also [3].

For the angle of deflection « at perpendicular incidence of the light on the grat-
ing the following applies: i

sina, = o~
(n order of diffraction, 4 wavelength of light, A grating constant = wavelength of
sound.)

Deflection cell  Diaphragm ! 2nd order
><_1st order

N
I~ ~a s
-~ BN
-~ N
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Fig. 8.18. Diffraction of light by the
Sound wave Photoelectric cell sound field
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W Fig.8.19. Ultrasonic probe using the
method of Fig. 8.18

The sound pressure influences the contrast of the light pattern and hence the in-
tensity of the different orders of diffraction. [935]

The use of this effect for sound receiving probes offers some advantages
(Fig.8.19). The sound is introduced into the diffraction cell which is filled with a
suitable liquid, for example xylol. A powerful light source, for example a laser,
should be used. Within certain limits the signal from the photocell increases with
both light intensity and sound pressure and much stronger signals can be obtained
than is possible with piezo-electric receivers.

Another advantage of the system is its insensitivity to electrical interference
and in addition the sound field is not disturbed by the act of measurement. By us-
ing the arrangement of Fig. 8.19 it is also possible to measure the sound amplitude
of a piezo-electric transmitter before entry into a test specimen, as well as of the re-
flected sound.

By a special optical arrangement it is possible to obtain an electric output in the
form of an alternating voltage at the sound frequency, or at an harmonic, or even in
DC form.

The diameter of the light beam should be close to the sound wavelength [76].

The schlieren-optical method can also be used for making visible the sound
field as a whole [2, 602].

We encounter another diffraction effect of light by a sound wave if the grating
(i.e. the wave front) is large compared to the sound wavelength in directions both
parallel and perpendicular to the light beam, cf. [797, 637]. This case corresponds to
the Bragg diffraction of X-rays by a crystal. Similar equations describe the effect in
the case of sound, which can also be used for producing an image of the whole
sound field (Chapter 13). The principle is a reflection of the light beam at grazing
incidence onto the wave fronts (Fig. 8.20).

If the light strikes the wave fronts at the angle «, then according to [44] it is dif-
fracted at the same angle when:

ni

sin oy = —27

Fig.8.20. Bragg diffraction of light in a
sound field. I diffraction cell, 2 sound beam,
3 incident light, 4 diffracted light
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A sound wavelength, 4 light wavelength, n order of diffraction.

The majority of the light is diffracted into the first order spectrum and since the
angle of incidence equals the angle of diffraction it is also possible to speak of
Bragg “reflection”. The light propagates as though it was being reflected by the
wave fronts acting as plane mirrors.

A further possibility for the reception of sound is the photo-elastic effect which
can influence the amplitude modulation of light. Many transparent materials be-
come double-refracting when mechanical stresses are applied. This means that their
refractive indices, for light polarized parallel and perpendicular to the direction of
stress, are different [2, 13]. The plane of oscillation of polarized light will be rotated
as a function of the applied pressure, which in the case of sound is the sound pres-
sure, and this can be measured by using a polarizing filter (analyser) which allows
light of only a certain direction of polarization to pass (Fig.8.21).

A block of material having strong photo-elasticity is illuminated by a polarized
light beam. The polarization filter placed behind does not allow any light to pass as
long as there is no double refraction in the block. An ultrasonic wave passing
through the block causes a rotation of the plane of polarization of the incoming
light and hence an electric signal in the photocell. The signal is within certain li-
mits proportional to the ultrasonic amplitude.

In this way a probe similar to that illustrated in Fig.8.19 could be built, but the
effect is of greater importance for imaging the complete sound field within a trans-
parent model made of a photo-elastic material. This serves as a mock-up for a spec-
imen of complicated shape so that it is possible to analyse the propagation of ultra-
sound in its interior (see Chapter 13 and [598]). In this case it is possible to
distinguish between longitudinal and transverse waves by rotating the plane of po-
larization of the light, since the double-refraction effect depends of the relative di-
rections of polarization and stress.

We will now deal with methods of sound reception where the physical displace-
ment of the surface is used to create optical effects.

The sound signal within a material can be detected at the surface by using a la-
ser beam. The back-scattered light undergoes a Doppler effect caused by the velocity
of the oscillating surface. This is a frequency change which can be transformed into
amplitude at the flank of an optical filter. Very steep flanks are provided, for exam-
ple, by the absorption lines of iodine vapor in a cell with saturated absorption but
nevertheless the overall sensitivity is not sufficient for most practical tasks.

The sensitivity of another optical method is, however, some powers of ten
higher. This is the optical interference method which can be used in, for example, a
Michelson interferometer.

Soundd  Polarisation Photoelectric
wave filter cell

Polarised
light
—

=

) Fig.8.21. Receiver probe using the photo-elastic
Work piece effect
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Fig. 8.22. Principle of the Michelson interferometer. a With a specularly reflecting specimen;
b on a rough surface. I photo-electric cell, 2 laser, 3 reference mirror, 4 beam splitter

In this the incident light is partially superimposed by the reflected light which is
frequency modulated by the vibrations of the surface under test. The frequency dif-
ferences detected at the output of the interferometer appear as a light signal falling
onto a photocell (Fig. 8.22).

A laser beam is used to illuminate the surface of the specimen via an optical
beam splitter and the split-off part, or reference beam, travels to the photo-electric
cell via the reference mirror. The light reflected from the test surface is also re-
turned to the photocell where it is superimposed onto the reference beam. Because
of the Doppler effect caused by the oscillating surface the input to the cell is bright-
ness-modulated [76].

To be properly superimposed the wave fronts of each beam have to be of exactly
the same form over their whole sections. This is a very difficult condition to achieve
and is not fulfilled if the specimen’s surface is somewhat oblique or rough. If (as in
Fig. 8.22b) the illuminated spot on the surface is kept very small by using a focuss-
ing lens, certain minor roughnesses may be allowed, but in most practical cases the
method is not very useful.

Another type of interferometer has been developed which avoids these handi-
caps (Fig. 8.23).

z
(- I o> p
!
b
. 7 3
4 a Ul lb
MWW

1

Fig. 8.23. Principle of a transit-time interferometer. / photo-electric cell, 2 laser, 3 specimen,
4 mirrors, 5 beam splitter, T semi-transparent mirror
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Part of the light reflected, or scattered, from the surface of the specimen takes a
longer path a and part a shorter one b to the photocell. The light wave front taking
the longer path via a is somewhat delayed compared with the other travelling via b.
Thus at the photocell two wave fronts of the beam are superimposed, each of which
struck the oscillating surface of the specimen, but with differing phases of the ultra-
sonic oscillation. If the time delay corresponding to the velocity of light by the a —
path is equal to exactly half the oscillation time of the ultrasonic wave at the sur-
face, then the first wave front undergoes the Doppler effect in opposite phase com-
pared to the second. The wave fronts in both cases are nevertheless unchanged and
identical and the interference at the photocell in this case is optimum. If the paths
are adjusted to give full darkness at the cell when the ultrasonic oscillation is zero,
it will give full brightness when oscillating ultrasonically.

For ultrasonic frequencies between 1 and 30 MHz a time delay for the light of
25 ns is useful but below 100 kHz the sensitivity is zero. Therefore any movements
of the specimen are not disturbing, cf. {739]. The complete system (Fig.8.24) con-
sists of the illuminating laser, the sound-generating laser and the interferometer.
The sound-generating laser emits high power pulses of about 20 ns in length and on
the surface they generate ultrasonic pulses in the frequency range 1 to 30 MHz. The
optical frequency of this laser is arbitrary over a wide range. The illuminating laser
operates in a quasi-continuous mode with a long pulse lasting at least for the whole
transit time of the ultrasonic pulse. It illuminates the area of the surface where the
ultrasonic echoes must be detected. The back-scattered light modulated by the
echoes is anlysed by the interferometer as explained above, converted to electric
signals and displayed on an oscilloscope screen (see Chapter 10).

Because of the extremely short ultrasonic pulses the echo resolution is very
high, and Fig. 8.25 shows an example of the back echo of a thin plate.

The distance separating the whole system from the specimen may be up to 10 m
or if one makes use of glass fibers to transmit the light signals it may be even larger.
This is of importance since the system has a rather large volume. In this case, a
mechanical scanning system has to be installed near to the specimen.

The advantages of the method which are contactless testing with high resolution
but without high demands on the quality of the surface, allows new applications of
which the testing of red-hot surfaces may be mentioned. As an example Fig. 8.26
shows a method testing red-hot ingot surfaces for cracks in which transmitter and
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Fig. 8.25. Screen display from a test with the
laser system in Fig. 8.24 on a plate 1.2 mm thick

Fig.8.26. Testing of ingots at red-heat for
surface cracks by the laser system, showing
schematically the influence of a crack on a
short wavelength (1) and a longer one (2)

receiver lasers work on separated parallel strips A and B. The short-wavelength sur-
face wave will be more affected by a crack than will the longer one, and this pro-
vides a method of discrimination between cracks of different depths.

Further examples of applications are wall-thickness measurements on thin-
walled tubing and on hot tubes during manufacturing, the testing of bonded joints
in aircraft structures, and the detection of micro-shrinkage in metals and ceramics.
For the latter purpose ultrasonic pulses of 50 to 500 MHz are provided which can
be generated in the form of shock pulses with a length of only 100 ps. As the sound
generating laser in this case so-called mode-coupled lasers are being used. The test
spot is reduced to a diameter of some tenths of a millimetre.

Concerning the application of lasers for ultrasonic testing cf. [S112, S116,
S173, 8§77, 1387, S112, S106, S 105]. In [S 132] laser pulses have been used to
measure both ultrasonic velocities in powder metallurgic composites for the evalua-
tion of their elastic constants.



Part B Methods and Instruments Used for
Ultrasonic Testing of Materials

9 Historical Survey of Developments

9.1 Survey and Tabular Summary

Table 9.1 lists all current methods of ultrasonic testing of materials. They are cate-
gorized by reference to three basic criteria: namely the type of primary meas-
ured quantity, the form of radiated ultrasound used (continuous wave or pulses)
and the effect of an anomaly within the material under test or on its surface. Based
on the presentation in the Table, each method will be discussed to an extent de-
pending on its practical importance.

The pulse-echo method which is the most important one will be described first. A
material inhomogeneity, when illuminated by a pulsed ultrasonic beam, reflects an
echo which is picked up by a receiver probe. The primary measured quantities
are therefore the amplitude of this echo and the transit time of the pulse from the
transmitter to the reflector and back (Chapter 10).

If only the transit time, or a corresponding frequency, is made use of so that the
amplitude need only reach a minimum detectable value, we have the transit-time
method. (Chapter 11). If in this case continuous ultrasound is used instead of pulses
we have the resonance method (Section 11.3.1) or the phase-measurement method,
(Section 11.4) in which inhomogeneities of the material also act as reflectors.

In the shadow method (Chapter 12), as known from X-ray diagnostics, an inhom-
ogeneity between transmitter and receiver produces a shadow which influences the
sound amplitude. The method is also called through transmission and the primary
quantity to be measured is the amplitude. This method can either be used
with pulses or with continuous sound. Historically the latter variant was the first
method used in an attempt to imitate X-ray fluoroscopy or screening. Because,
when using X-or Gamma-rays, the intensity on the screen or the photographic film
is important, we can in the case of ultrasound also speak of the intensity method,
though in physical terms piezo-electric receivers measure the sound pressure ampli-
tude and this is proportional to the square root of the intensity.
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If in addition to the amplitude the phase of the received sound is also measured
we have the method called acoustic holography which is an anlogue of optical holo-
graphy (Section 13.14). It can be carried out with either continuous or with pulsed
ultrasound. A material inhomogeneity will be indicated by both its shadow effect
and by its echo.

In principle all the methods mentioned above may be used for imaging methods
(Chapter 13), by further electronic processing of the primary quantities to form
an image. There are in addition a number of other methods, where the piezo-elec-
tric effect is used in other ways and also where it is used only for generating ultra-
sound as, for example, in the schlieren method.

The method of acoustic-emission analysis (Chapter 14) plays a special role in
which the primary quantities are the amplitudes and pulse transit times of
sound energy emitted by the inhomogeneity itself when it changes its shape. This
method is also called therefore a passive method, the only one mentioned here.

With the frequency-modulation method an inhomogeneity acts as a reflector, as
in the pulse-echo method, but continuous sound is used with a periodically modu-
lated frequency (Section 10.7).

9.2 Historical Development

1929 may be considered as the year of birth of ultra-sonic materials testing because
it was then that Sokolov first proposed using the shadow method with continuous
waves to detect defects in solid materials [1441]: cf. Fig.12.2. Miihlhiuser obtained
in 1931 the first patent for an instrument working with the shadow method [1071].
Further names associated with this development are Kruse [862, 863], Meyer and
Bock [1026] Czerlinsky [283, 284], GGtz [S43] and Shraiber [1411], all using labora-
tory-built devices with transducers made from piezo-electric quartz plates. The
high-frequency generators used for producing potentials up to several hundred volts
in some cases, were frequency modulated either mechanically, using rotating con-
densers, or electronically using noise generators [283]. The latter methods were
used to avoid the production of standing waves. The amplifiers and indicating in-
struments used were standards of the time and to avoid direct crosscoupling be-
tween transmitter and receiver they were usually built separately and with effective
shielding.

Such laboratory-built instruments were also used for the first practical testing of
steel boiler plates for laminations during the second world war by the companies
AEG and Borsig in Berlin. The method used was the shadow technique with fre-
quency modulation. The instrument was designed by Berthold and Trost [1534],
(see also Fig. 9.6 in the 3 edition of this book).

Series production of instruments for using the shadow method started after the
war at the companies ACEC of Charleroi, Belgium, and Dr. Lehfeldt and Co. of
Heppenheim, Germany.

The first experiments for imaging methods also started in the 1930s. The first of
these, which transformed the sound pressure into a visible image was the Pohlman
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cell (cf. Section 13.9 and [1202, 1203]). A complete device using this cell, the Schall-
sichtgerdt, was used before 1945 to test steel plates. It had a very large visual field of
500 mm diameter but it found no further practical applications in later years. The
principle of the Pohlman cell has recently been used by Ogura et al. [1138] and by
Cunningham and Quate in 1972 [280], the latter using a frequency of 1000 MHz for
ultrasonic microscopy with the shadow method.

The principle of the relief method came in 1936 from Sokolov [1442], (Section
13.1). Sound waves at high ultrasound intensities reflected from an immersed
specimen onto the water surface generate ripples. This “image” can be observed with
special illumination and the method has been developed for frequencies between
50 and 100 MHz for commercial applications as an ultrasonic microscope. (SLAM
= scanning laser acoustic microscope or sonomicroscope by Sonoscan, USA).

Another proposal by Sokolov in 1937 [1444, 1445] was to make visible the elec-
tric-charge distribution on a piezo-electric disk used as a receiver. Electronic scan-
ning would make the charge pattern visible by presentation on a CR-tube screen
(Sokolov camera), Section 13.10.

To avoid the disadvantages of the shadow method when using continuous waves
Sokolov proposed in 1941 the frequency-modulation method [1445] (Section 10.7). It
was however soon overtaken by the pulse-echo method and has not found further
applications.

For completeness we also mention the phase-measuring method of Hatfield used
from 1952 for thickness and velocity measurements [622]. Continuous waves are
used and the phase of an outgoing wave is compared with that of a reflected one.

Sound-emission analysis was first recognized as a possible means for non-destruc-
tive testing of materials by Kaiser [744]. The first trials to use it in a quantitative
manner were made by Mason, McSkimin and Shockley [994]. Though much work
has been carried out in the meantime, it is still not possible to accept the method as
fully developed. For a recent survey, see Lord [932].

For materials testing continuous waves were replaced by pulses in the 1940s,
but they found many applications for wall-thickness measurement using the reson-
ance method (Section 11.3.1). This makes use of the fact that the resonance fre-
quency of a plate depends on its thickness. Based on a 1944 patent of Erwin and
Rassweiler [418] General Motors Corp. first built the Sonogage in 1947 and more ap-
plications were later found by the Vidigage of Branson Instruments Inc.

Subsequent progress in electronic pulse techniques has lead to the replacement
of resonance based instruments by pulse-echo equipment for wall-thickness mea-
surements. The transit time measured by the pulse-echo method gives directly the
wall-thickness by using the known velocity of sound.

This, by far the most important method of non-destructive testing of materials
by ultrasonics, the pulse-echo method, was certainly first used by the bats. In 1798
Spallanza already supposed that bats can orientate by using inaudible sound sig-
nals, but this was not proved until 1938 by Pierce and Griffin. The technical reali-
zation of the method was facilitated by the discovery by Jacques and Pierre Curie of
the twin piezo-electric effects in 1880 and 1881. They used quartz crystals as trans-
mitters and receivers of ultrasonic waves [281, 282]. Lord Rayleigh enunciated the
scientific fundamentals of the propagation of sound in solids in his “Theory of
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Sound” between 1885 and 1910. Finally in the history of the technique Langevin
and Chilowski must be mentioned since they solved between 1915 and 1917 the
problem of detecting under-water submarines and icebergs by using ultrasonic
pulses [891].

Subsequently the method has found many applications in measuring sea-depths
but for materials testing it could not be used effectively before the rapid develop-
ments of electronic engineering during the period 1935 to 1938 for use in Radar.
(electromagnetic waves used in the atmosphere for aircraft detection; see for exam-
ple Graff [558]).

The first proposal to use pulse-echo techniques for materials testing came in
1940 from Firestone [451, 454, 456] in the USA.

In an independent development in England, Sproule used the method in about
1942 [558, 313]. In Germany a pulse-echo system was also developed by Kruse
[558].

This method has several important advantages over shadow techniques. The
sensitivity is much greater for even small defects which may cause only small varia-
tions of the sound pressure in the shadow. The transit time also allows the measure-
ment of the reflector distance which is not possible at all with the shadow method.
Further only one side of the specimen needs to be accessible for testing and it also
overcomes any difficulties with the formation of standing waves.

Ultrasonic pulses have incidentally been used much earlier by Hiedemann and his colla-
borators to determine sound velocities by measuring transit times [655] (Section 11.3.2).

It has sometimes been claimed that Sokolov was the inventor of the pulse-echo method
but strictly speaking this is not true. What he proposed was the shadow method using the rear
echo from plates (Fig. 12.1) and to avoid standing waves he even used pulses. However, the
echo from the defect itself was not detected and received but only the attenuation of the rear
echo [1444).

The first commercial apparatus for using the pulse-echo method were built in
1943 at about the same time by the companies Sperry Products Inc. Danbury, USA
and Kelvin and Hughes Ltd., London, based on the work of Firestone and Sproule
respectively.

Since then many manufacturers have marketed various units of much smaller
size and weight thanks to electronic developments. At the same time their sensitiv-
ity and resolution has considerably increased, thanks to piezo-ceramic develop-
ments. The size of modern units, which was greatly reduced following the replace-
ment of electronic valves by transistors, is now more or less determined by the size
of the CR tube and the AC powerpack or the battery.

In the first few years of pulse-echo applications, considerable success was
achieved in testing large forgings using directly coupled quartz probes. In this work
longitudinal waves at perpendicular incidence were used and although transverse
waves were known they were considered as difficult to control due to mode chang-
ing problems. Because of this opinion further applications were confined to axles
and plate material. However, in the early 1950s Carlin {210] fitted plastic wedges to
longitudinal wave probes to produce transverse waves projected obliquely to the
surface. By the use of these a large number of new applications became possible
and in particular the testing of tubes and welds. However, the various types of
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guided-wave have found only very limited applications up to the present. Quartz is
hardly used any more as a piezo-electric material and new materials, such as the
piezo-ceramics, are used instead because of their higher sensitivity.

The method of testing used originally was by scanning the surface of the speci-
men by hand and observing a CR tube screen picture in the form of a horizontal
time base with vertical peaks (A scan) and it is still commonly used today. Addition-
ally a number of manual tasks have been mechanized and the screen observation is
carried out by electronic devices.

The original aim of getting a visual image of the specimen, with its defects, has
also been followed when using the pulse-echo method. There has however not been
much success in practice, although a sectional image (B scan) or a plan view (C
scan) can easily be obtained with a simple probe-scanning device. More compli-
cated methods (see Chapter 13) have found preferred applications in medicine.

The fundamental papers on holography were published in 1948 and 1949 by Ga-
bor [500, 501] (Section 13.14). He proved then that it is possible to obtain an image
of a three-dimensional wave field on a two-dimensional film by using a coherent
light source. After the invention of the laser optical holography started its develop-
ment at the beginning of the 1960s [914] and was soon followed by the first experi-
ments with ultrasonic holography (Greguss [570], Mueller and Sheridan [1074] and
Thurstone [1522] (in 1965 and 1966). Modern developments have more possibilities
for medical purposes whereas practical systems for material testing are still at an
experimental stage.

Mezrich and his collaborators [1035] have in 1974 invented a scanning method
with lasers using interferometry. One of the twin mirrors of a Michelson interferome-
ter is formed by a very thin metallic foil immersed in a cell filled with liquid. It can
follow the particle movement in an ultrasonic wave and a laser beam scans its sur-
face to produce an image (ultrasonovision or RCA camera see Section 13.2).

The schlieren method (Section 13.5) makes use of the Debye-Sears effect [307,
935] in which the optical refractive index of transparent media is modified by the
pressure oscillations of ultrasound. The method is used preferably for imaging the
sound fields of probes and the propagation of sound in liquids or transparent mod-
els of specimens, rather than for general imaging [1614, 93].

The same physical effect is the base for the method of Korpel [834] here called
Bragg diffraction (Section 13.4). The oscillations of the refractive index in a trans-
parent material produce an optical grating at which light is diffracted. Imaging by the
photo-elastic effect (Section 13.6 and 13.7) is possible by using certain transparent
materials which become double refracting by the applied stress of an ultrasonic
wave. Polarized light rotates its plane of polarisation and can then be analysed by a
polarisation filter. The signals from which the image is built up depend on the local
ultrasonic sound pressure and applications are the same as with the previously de-
scribed methods.

Piezo-electric scanning (Section 13.12) with mechanical scanning devices provide
at each probe position the echo amplitudes from, and the corresponding transit
times for, any reflectors within the specimen, which in most practical cases has
been the human body. The results can be displayed on a CR tube screen or re-
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corded in many different ways (Dussik 1942 [353], Wild and Neal 1951 [1625], Do-
nald 1955 [336], Suckling and McLean 1955 [1482]).

Mechanical scanning is usually very slow and therefore turning the beam elec-
tronically by a so-called phased array is much more effective. The individual radia-
tors are phase controlled as was first proposed by Bradfield in 1954 {173] and used
by Somer in 1968, cf. also [68]. This method was already known from Radar tech-
niques, from which many other improvements were derived. It is now possible to
obtain realtime images for medical diagnostics with moving images akin to cine
film.

The latest developments are digital-image systems, where after piezo-electric
scanning the aperture and the focus of the ultrasonic beam is synthesized. This sys-
tem of data processing is explained in Section 13.12 for the SAFT-UT method and
by using sufficiently quick computers it is possible to obtain sectional images (B
scan) in quasi-real time.

The first applications of ultrasonic tomography were by Greanleaf and collabora-
tors 1974 [568] (Section 13.12).

Two methods of ultrasonic microscopy were developed for practical applications
in the early 1970s by Quate et al. (SAM: scanning acoustic microscope) and Korpel
et al. (SLAM: scanning laser acoustic microscope) [836, 916] (Section 13.13).



10 The Pulse-Echo Method; Design and Performance
of a Pulse-Echo Flaw Detector

10.1 Fundamentals

Figure 10.1 shows the principle of the method in which an ultrasonic pulsed wave,
usually in form of a damped oscillation, is generated by a probe and propagates
into a specimen with the ultrasonic velocity corresponding to the material con-
cerned. Part of the ultrasound will be reflected if it strikes an obstacle in the form of
an inhomogeneity and, if this is not too large, the remainder will travel further to a
boundary of the specimen and will be reflected back to a receiver, if the rear surface
and the receiver are in favorable positions. The signal obtained from the receiver is
displayed as a peak on a base line of a CR tube (Fig. 10.2). The horizontal sweep is
proportional to the time, so that the transit times of the pulse to and from the re-
flector, and to and from the back wall, correspond respectively to the distances on
the screen from the initial peak to the echo peaks corresponding to reflector and
back wall. To obtain a standing image the pulses and the sweep of the CR tube are
synchronised at the so-called pulse-repetition frequency.

By calibration of the base-line in time per unit length the transit times #z and t
to the reflector and the back wall respectively can be read from the screen and we
obtain for the distance d of any reflector, knowing the velocity of sound c;

2d ct
—=c or d=—].
t 2
Iransmitter Defect Back wall
pulse echo echo

Back wall

Transmitter
Defect
Receiver > L__‘ | SRR
f
Specimen fy

Fig. 10.1. Principle of the pulse-echo Fig. 10.2. Display on the CR screen

method (schematic)
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Usually the thickness dy of the specimen will be known and it can serve to cali-
brate the sweep directly in units of length. Otherwise a testblock of the same mate-
rial and of known thickness may be used.

Example. A specimen of 100 mm thickness is tested and its back echo is positioned
at the right-hand edge of the screen by varying the speed of the sweep. An indica-
tion of a defect appears at 30 % of the distance of the back echo which means that
the reflection took place at a depth of 30 mm from the surface. In this way a scale
can be placed in front of the screen, and the beginning of the transmitter peak and
the back-echo peak shifted respectively to the zero and the 100-mm points. The dis-
tance of an indication now can be read immediately in units of length.
The amplitude of the received echo depends on several influences, these being:

— Transmitter pulse power entering the specimen,

— Directivity of the transmitter probe,

— Size of the reflector,

— Surface quality of the reflector,

— Position of the reflector,

— Size and directivity of the receiver probe,

— Losses at the receiver by reflection and coupling,

— Attenuation of the wave by absorption and scattering of the material,
— Shadow effect of any defects in front of the reflector

\ ~ NN T
7 T
s \\ N A \\ AN // 4 [ \\\
1 \ A
T | T T
_.———:—4——"" I——l———' !
=i —JE=== —[———— |
————— —~— — T — —— —
a b c
,
s \\ AN // \ N
| 3
LR ~ ~1
————— - <
_{Z:i_f'yl _[__"“4’ oS
d e f I

Fig.10.3. Schematic screen pictures obtained by the pulse-echo method. a Small flaw in
sound beam; b two small flaws in sound beam; ¢ large flaw in sound beam, smaller second
flaw and back wall masked; d large, obliquely orientated flaw, back wall masked; e small flaw
but no back wall echo because the axis of the beam is not incident at right angles on back
wall; f strong attenuation of sound beam due to scattering, no echo from flaw or back wall,
only “grass”
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b

Fig. 10.4. Multiple echoes in a plate. a schematic; b actual screen picture without time or
thickness scale; steel plate 50 mm thick, frequency 4 MHz

Some of these effects are illustrated in Fig.10.3. Several defects within the beam
may be indicated simultaneously, (Fig.10.3b), provided that one is not completely
hidden in the shadow of the other. In some cases, however, even a smaller defect
behind a larger one may be indicated by a wave diffracted at the edges of the first,
and of course the back echo may also be screened (Fig. 10.3¢). According to the
simple geometrical aspects of the sound wave the back-wall echo would disappear
when the defect in front just covers the complete beam. From this fact one can ob-
tain an approximate estimate of the defect size in some cases, especially important
for obliquely situated defects. The back-wall echo is also missing from oblique back
walls or by too strong an absorption or scattering of the material (Fig.10.3 e and f).

In the latter case scattering is usually indicated by many close peaks decreasing
with distance, the so-called grass.

A specimen of plane-parallel form usually allows several equally spaced back
echoes to be visible on the screen if a sufficiently large range of distance is used
(Fig. 10.4). This arises from the fact that the echo wave, when it arrives at the test
surface, loses only a small part of its energy back into the receiver probe, the larger
amount being re-reflected twice, and so on, until the energy is reduced to zero by
absorption and beam spread in accordance with Chapters 4 and 5.

The transit times between any two adjacent multiple echoes are equal and very
precise, so that they can be used for estimating wall thicknesses by measuring the
total separation of n echoes and dividing it by n to obtain a single thickness.

10.2 Basic Functions of a Pulse-Echo Flaw Detector

10.2.1 Block Diagram

Pulse-echo flaw detectors are basically oscilloscopes with special features. Fi-
gure 10.5 shows schematically the repetition frequency generator (1), sweep syn-
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5 Fig. 10.5. Block circuit of a pulse-echo
flaw detector

chronisation (2) and the pulse generator (3). If only one probe is used as transmit-
ter and receiver (the usual arrangement) the pulse generator excites the transducer
(4), and the echoes received are amplified by the amplifer (), rectified, and fed to
the CR tube (6).

10.2.2 The CR Tube

For visual display of the echo pattern electrostatic CR tubes are almost exclusively
used (Fig. 10.6). An electron beam is generated in high vacuum marking a lumines-
cent spot of the screen and condensers in both the horizontal and perpendicular
configurations vary the beam direction by their applied voltages. The brightness of
the spot depends on the beam energy and therefore on the voltage applied to the
electron source. The quality of the image depends on the brightness and sharpness
of the spot, and on the linearity of the sweep control.

The writing velocity of the electron beam has to be very high, especially for
small test ranges. For a calibrated range of 100 mm in steel corresponding for
example to 100 mm in length of the base line (imaging one to one) it is about
3 x 10°® m/s on the base line, but on the rise of the peaks it must be up to 100 times
higher. To make the picture sufficiently bright to be clearly visible, including in the

~—F

Fig.10.6. Principle of a CR tube.
1 electron gun, 2 Y-deflection plates,
3 X-deflection plates, 4 electron beam,
5 luminous spot
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open air, CR tubes with quite high voltages for the electron gun and for additional
acceleration (between 2 and 20 kV), have to be used.

Instead of electrostatic tubes electromagnetic ones have occasionally been tried.
However, the deflection coils make it difficult to attain the necessary limit fre-
quency of the deflection system. Otherwise the narrow band width will reduce
the precision of the displayed peaks.

10.2.3 The Repetition-Frequency Generator and the Base-Line Voltage

To obtain stationary screen pictures the repetition-frequency generator triggers
both the transmitter pulses and the start of the sweep generator. Usually the trans-
mitter pulse is triggered a little later than the sweep so that it is visible on the left-
hand side of the screen a little to the right of the start of the sweep, as for example
in Fig.10.4.

Figure 10.7 displays the voltage variations over two periods in a more general
case. The delay ¢ of the transmitter pulse after the trigger pulse is smaller than the
delay of the sweep start fg, and therefore in this case the main pulse will not be visi-
ble during the sweep time and while the trace is bright. Only a few of the echoes
will then be visible but in most cases #; will be a little larger than 7.

The time base was formerly given a fixed distance scale, which is today usually
built into the CR-tube screen, and it was calibrated in various distance ranges for
steel corresponding for example to 50, 100, 250 mm etc. by varying the sweep veloc-
ity.

For a rough distance measurement it is sufficient to measure the distance of an
echo pulse from the rise of the main pulse. For more precise measurements it turns
out that there is a certain delay between the rise of the electric pulse on the CR
screen and the actual entrance of the ultrasonic pulse into the specimen, due to
transit times within the probe. This effect is till more important when using probes
fitted with a plastic shoe or for example the perspex wedge of an angle probe (see
(Section 10.4.2). This delay is called “error of zero point” and can be eliminated for
normal (0°) probes as shown in Fig. 10.8.

The multiple echoes from a plate are adjusted by shifting the whole picture and
calibrating the distance scale so that they coincide with the correct graduations of
the scale. The main pulse will then start a little to the left of the zero point of the

2l l |-
N
|

Fig. 10.7. Diagram of time. ¢; main pulse
" " — delay, ts delay of the sweep (time base),

t, time of picture, ¢; time of interval.
4 1 voltage of the repetition frequency gen-
bright erator (trigger), 2 transmitter pulse,
5 dark l———— 3 echo pattern, 4 sweep voltage, 5 bright-
{5 ——wtm fp—tem [} i f et fp e dark voltage for the CR tube
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Fig. 10.8. Determination of zero error A by means of multiple echoes from a plate (steel,
20 mm thick), using a probe protected by plastic layer approx. 1 mm thick

AT

Ep Picture £p

Fig. 10.9. Appearance of spurious flaw echoes (phantom echoes E,) if pulses are spaced too
closely (repetition frequency too high) compared with the thickness of the specimen and its
acoustic attenuation. a Schematic; b traces on screen showing indistinct phantom echoes, also
to the left of the transmitting pulse

scale corresponding to the zero error measured for example in millimeters of steel,
this being a characteristic of the probe type concerned.

Some designs of flaw detector have the ability to use an external trigger when,
for example, several units have to be used simultaneously. In that case the trigger
unit is the “master”, the others being “slaves”.

A high trigger frequency gives a bright picture, but it must be chosen low
enough to enable all superfluous multiple echoes to disappear before the next ac-
tive period is triggered. If it is too high these delayed echoes will be visible (as in
Fig.10.9) and are called phantom echoes.

To avoid such spurious echoes the time interval ¢; in Fig. 10.7 must be sufficiently long,
which from experience is about 60 times longer than the working time ¢p of the picture. Some-
times however this is still not enough, when for example forgings of high quality steel, espe-
cially alloys with nickel, which have low attenuation (high transparency) have to be tested.

It is then essential to reduce the trigger rate, or to learn to distinguish the phantom echoes
from real ones. This is possible because a trigger frequency of 500 Hz for example is normally
somewhat modulated by the mains frequency which causes some jitter in the wrong echoes,

and because the time difference between two trigger pulses does not remain exactly constant
the delayed echoes also appear less sharply focussed.
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Fundamentally the required time interval depends on the testing range and
therefore in most designs the trigger frequency and the range are switched together.

The horizontal sweep voltage is usually applied symmetrically to the sweep
plates of the CR tube, as in Fig. 10.5. Each plate is fed with the same voltage but
with different signs. Line 4 in Fig.10.7 shows its pattern. One complete period con-
sists of the sweep delay s, the picture or working time tp and the interval time ¢,.
During the working time the sweep voltage rises uniformly from zero and so shift-
ing the electron beam from left to right. During the interval time the sweep voltage
falls back to zero in an arbitrary way, outside the picture time t, the brightness be-
ing reduced to zero by a rectangular voltage (line 5 in Fig. 10.7).

The sweep voltage proportional to time is generated by condensers charging at
constant current. The travel time of the luminous spot across the screen is propor-
tional to the ratio of their capacitance to the current. In many instruments this cur-
rent is controlled by a potentiometer directly calibrated in terms of sound velocity.
The values of the capacitors which are switched by the test-range control are pro-
portional to these ranges, so that the full width of the screen is automatically ad-
justed for each setting in the appropriate units of length, for a given velocity.

For computer-aided instruments the precision of the time base must be much
increased, and this is achieved by using a phase-locked loop, the sweep time being
controlled by a quartz oscillator.

It is sometimes desirable to magnify a selected small part of the echo picture
when the main pulse is of no interest. To achieve this purpose, using a circuit called
“scale expansion”, a section of the time base is expanded over the whole range of
the screen (Fig.10.10). The section within the test range selected for expansion can

Voltage — =

Fig.10.10. Sweep voltage for 1-m
range in steel (a) and expanded for
250 mm (b)

Fig. 10.11. Screen picture of a specimen with back echo R and a group of defect indications F,
with normal sweep at 1-m range (a) and with scale expansion to 250 mm (b)
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be moved in the same way as a magnifying glass scans over a subject. Figure 10.10
shows the sweep voltage for the range of 1 m steel together with the scale expansion
for a range of 250 mm. The corresponding screen patterns can be seen in Fig.10.11.

In principle it is not difficult to expand the time base far more and in the case
of wall-thickness measurement a 10-mm range may be useful, but in this case the
supply voltages must be very constant to avoid jittering of the echoes.

When testing components under water, in so-called immersion testing, the
sound pulse has first to travel through water and the interesting testing range starts
only with the entrance echo. Because the length of the water path may vary during
testing it is of advantage to use the entrance echo to trigger the sweep. The block
circuit of Fig. 10.5 would for this case have to be changed. The transmitter genera-
tor triggers only the transmitter pulse, whereas the sweep is triggered by the ampli-
fier via a gating circuit (see below).

When using the simplest circuit for starting the sweep by an echo (echo start) the echo it-
self is not usually completely visible because it has first to start the sweep. If this situation is

undesirable and it is required to display the echo fully, then the content of the picture has first
to be delayed somewhat before transmission to the CR tube via a delay line.

10.2.4 The Transmitter

To excite the transmitter pulse a voltage pulse of some hundred volts is provided
and its amplitude and shape have a great effect on the transmitted ultrasonic pulse.

Although by the use of new solid-state electronic components the circuit details
have changed considerably, the principle can still be illustrated as in Fig.10.12. The
condenser C is charged to some hundred volts. The trigger signal closes an elec-
tronic switch which discharges the condenser and makes its peak voltage appear at
the output to the transducer. The condenser is discharged via the resistor R and the
coil L in parallel with the transducer (see also Section 10.4). By means of the electric
pulse the transducer is excited to produce a mechanical pulse which is transmitted
as an ultrasonic pulse into the specimen via a coupling layer.

The form of the electric pulse is influenced very much by the transducer and
even by its coupling conditions. Because <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>